• Title/Summary/Keyword: live load model

Search Result 76, Processing Time 0.025 seconds

Development of Statistical Truck Load Model for Highway Bridge using BWIM System (BWIM 시스템을 이용한 고속도로 교량 차량하중 모형 개발)

  • Park, Min-Seok;Jo, Byung-Wan;Bae, Doo-Byong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.143-153
    • /
    • 2006
  • In design of bridges, estimation of actions and loadings is very important for the safety and maintenance of bridges. In general, effect of traffic loading on the bridge can be modeled as live load (including impact load) and fatigue load. For estimation of traffic loading, it is important to get reliable and comprehensive truck statistical data such as the traffic and weight information. To get statistical data, Bridge Weigh-In-Motion (BWIM), which measures the truck weights without stopping the traffic, is need to be developed. In this study, BWIM system with various functions is developed first. Then this system is used to get comprehensive truck data. Traffic loadings including fatigue and live loading are formulated from the truck data acquired from the bridges. Objectives of this study are to develop the BWIM system, to apply the system in test bridge in Highway, and to formulate the live and fatigue loading for bridge design.

A Study on Live Load Design Standards Considering Moving Load (For Shorter than 60m Span) (이동하중을 고려한 활하중 설계기준 연구 (60m 이하 교량))

  • Jin, Kyung Seok;Han, Man Yop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1261-1270
    • /
    • 2013
  • The current domestic design criteria of live load employs DL-24 load and DB-24 load. Particularly for long span bridges above 45meters, DL-24 load is forced to apply and design them, since the shearing force and the moment of DL-24 load appears more dominate than those of DB-24. But it appeared that this DL-24 load didn't meet the vehicles traveling load, which affected bridges in real use. Hence this paper defined ML-24 load similar to the load applied to real bridges and also defined a new live load model, RL-24 load, after adjusting the existing DL-24 load, which doesn't meet the moment and the shearing force of ML-24. As the result of applying and reviewing RL-24 load to simple bridges of span of 45~60m, the results satisfying both the moment and the shearing force applied to bridges in real use by traveling load were attained. Besides, the applicability of it was examined in comparison with live load models of home and abroad.

Resistance Model for Reliability Analysis of Existing Steel Girder Bridges (강거더 교량의 신뢰성해석을 위한 저항모델 개발)

  • Eom, Jun Sik
    • Journal of Applied Reliability
    • /
    • v.13 no.4
    • /
    • pp.241-252
    • /
    • 2013
  • Because of financial and safety concerns, there are needs for more accurate prediction of bridge behavior. Underestimation of the bridge load carrying capacity can have serious economic consequences, as deficient bridges must be repaired or rehabilitated. Therefore, the knowledge of the actual bridge behavior under live load may lead to a more realistic calculation of the load carrying capacity and eventually this may allow for more bridges to remain in service with or without minor repairs. The presented research is focused on the reliability evaluation of the actual load carrying capacity of existing bridges based on the field testing. Seventeen existing bridges were tested under truck load to confirm their adequacy of reliability. The actual response of existing bridge structures under live load is measured. Reliability analysis is performed on the selected representative bridges designed in accordance with AASHTO codes for bridge component (girder). Bridges are first evaluated based on the code specified values and design resistance. However, after the field testing program, it is possible to apply the experimental results into the bridge reliability evaluation procedures. Therefore, the actual response of bridge structures, including unintentional composite action, partial fixity of supports, and contribution of nonstructural members are considered in the bridge reliability evaluation. The girder distribution factors obtained from the tests are also applied in the reliability calculation. The results indicate that the reliability indices of selected bridges can be significantly increased by reducing uncertainties without sacrificing the safety of structures, by including the result of field measurement data into calculation.

A Study on Configuration of Small Wind Turbines for Maximum Capacity of Wind Power Systems Interconnected With a Building (빌딩 내 최대 풍력발전설비 연계를 위한 소형풍력발전원 구성에 관한 연구)

  • Lee, Yeo-Jin;Kim, Sung-Yul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.605-612
    • /
    • 2017
  • One of the biggest environmental issues that our world has been facing is climate change. In order to cope with such environmental issues, the world is putting a great deal of effort into energy conservation. The building sector, in particular, consumes 36% of the energy consumed worldwide and emits considerable amount of greenhouse gases. Therefore, introduction of renewable energies in the building sector is highly recommended. Renewable energy sources that can be utilized in the building sector include sunlight, solar heat, geothermal heat, fuel cells and wind power. The wind power generation system which converts wind energy into electrical energy has advantages in that wind is an unlimited and pollution-free resource. It is suitable to be connected to existing buildings because many years of operational experience and the enhanced stability of the system have made it possible to downsize the electrical generator. In case of existing buildings, it is necessary to consider the live loads of the buildings to connect the wind power generation system. This paper, through the connection of the wind power generation with existing buildings, promotes reduction of greenhouse gas emissions and energy independence by reducing energy consumption in the building sector. In order to connect the wind power generation system with an exciting building, the live load of the building and the area of the rooftop should be considered. The installable model is selected by comparing the live load of the building and the load of the wind power generation system. The maximum number of the wind turbines that can be installed is obtained by considering the separation distance between the wind turbines within the area of the rooftop. Installations are divided into single installations and multiple installations of two different types of wind turbines. After determining the maximum installable number, the optimal model that can achieve the maximum annual power generation will be selected by comparing the respective total annual amount of the power generation of different models.

Bridge widening with composite steel-concrete girders: application and analysis of live load distribution

  • Yang, Yue;Zhang, Xiaoguang;Fan, Jiansheng;Bai, Yu
    • Advances in concrete construction
    • /
    • v.3 no.4
    • /
    • pp.295-316
    • /
    • 2015
  • A bridge widening technology using steel-concrete composite system was developed and is presented in this paper. The widened superstructure system consists of a newly built composite steel-concrete girder with concrete deck and steel diaphragms attached to the existing concrete girders. This method has been applied in several bridge widening projects in China, and one of those projects is presented in detail. Due to the higher stiffness-to-weight ratio and the rapid erection of composite girders, this widening method reveals benefits in both mechanical performance and construction. As only a few methods for the design of bridges with different types of girders are recommended in current design codes, a more accurate analytical method of estimating live load distribution on girder bridges was developed. In the analytical model, the effects of span length, girder pacing, diaphragms, concrete decks were considered, as well as the torsional and flexural stiffness of both composite box girders and concrete T girders. The study shows that the AASHTO LRFD specification procedures and the analytical models proposed in this paper closely approximate the live load distribution factors determined by finite element analysis. A parametric study was also conducted using the finite element method to evaluate the potential load carrying capacities of the existing concrete girders after widening.

Comparison of Structural Analysis Models on PSC I-Girder Bridges (I형 PSC 거더교를 위한 구조해석 모델의 비교)

  • Lee Hwan-Woo;Kim Kwang-Yang;Han Sang-Jun;Ko Dong-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.725-732
    • /
    • 2006
  • This study has been started for the development of a refined live load distribution formula that has safety and precision toward I type prestressed concrete girder bridge. This type of bridge is mainly applied to short span bridges that are $25{\sim}40m$ in length. Based on various structure analysis models that are currently being applied as preceding studies for the development of live load distribution method. an analysis of flexural stiffness ratio for barrier and diaphragm has been performed. As the result of parametric analysis for the changes in flexural stiffness ratio, the effect of barrier on load distribution showed as insignificant in all structural analysis models while analyzing the deflection distribution. Also. the deflection distribution of the models with stiffness of 25% in which the diaphragm eccentricity is accounted for as same as the models with stiffness of 100% in which the diaphragm eccentricity is unaccounted for. This results are verified through the comparison with a experimental data.

  • PDF

Evaluation of Bridge Load Carrying Capacity of PSC Girder Bridge using Pseudo-Static Load Test (의사정적재하시험을 이용한 PSC 거더교의 공용 내하력평가)

  • Yoon, Sang-Gwi;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.53-60
    • /
    • 2019
  • In this study, a method for updating the finite element model of bridges with genetic algorithm using static displacement were presented, and verified this method using field test data for PSC girder bridge. As a field test, static load test and pseudo-static load test were conducted, and updated the finite element model of test bridge using each test data. Finally, evaluated the bridge load carrying capacity with updated model using pseudo-static load test's displacement data. To evaluate the bridge load carrying capacity, KHBDC-LSD, KHBDC and AASHTO LRFD's live load model were used, and compared the each results.

Reliability analysis of concrete bridges designed with material and member resistance factors

  • Paik, Inyeol;Hwang, Eui-Seung;Shin, Soobong
    • Computers and Concrete
    • /
    • v.6 no.1
    • /
    • pp.59-78
    • /
    • 2009
  • Reliability analysis for a proposed limit state bridge design code is performed. In order to introduce reliability concept to design code, the proposed live load model is based on truck weight survey. Test data of domestic material strengths are collected to model statistical properties of member strengths. Sample RC and PSC girder sections are designed following the safety factor format of the proposed code and compared with the current design practice. Reliability indexes are calculated and examined for material and member resistance factor formats and sample calibrations of safety factors are presented. It is concluded that the proposed code provides reasonable level of reliability compared to the international design standards.

A Study on the Computation of Overload Probability Based on Bridge Load Rating Factor (교량내하력 값에 기초한 초과하중 확률 계산에 관한 연구)

  • Yang, Seung-Ie;Kim, Jin-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.125-134
    • /
    • 2003
  • In order to rate current bridge load carrying capacity, typically two methods are used. These are Allowable Stress Rating (ASR) and Load Factor Rating (LFR). Using the rating factors, there are many attempts to make a connection between rating factors and probability concept. The main purpose of the paper is computing the probability of overload using rating factors and probability concept. In this paper, the load rating methods are briefly explained, and the probability concept is connected to rating factors by using live load from Weigh-in-Motion (WIM). Based on the live load model and rati ng factor, the computation procedure of the probability of overload is explained.

Analysis of Design Live Load of Railway Bridge Through Statistical Analysis of WIM Data for High-speed Rail (고속철도 WIM 데이터에 대한 통계분석을 통한 철도교량 설계활하중 분석)

  • Park, Sumin;Yeo, Inho;Paik, Inyeol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.589-597
    • /
    • 2015
  • In this paper, the live load model for the design of high-speed railway bridge is analyzed by statistic and probabilistic methods and the safety level that is given by the load factors of the load combination is analyzed. This study is a part of the development of the limit state design method for the railway bridge, and the train data collected from the Gyeongbu high-speed railway for about one month are utilized. The four different statistical methods are applied to estimate the design load to match the bridge design life and the results are compared. In order to examine the safety level that the design load combination of the railway bridge gives, the reliability indexes are determined and the results are analyzed. The load effect from the current design live load for the high-speed rail bridge which is 0.75 times of the standard train load is came out greater than at least 30-22% that from the estimated load from the measured data. If it is judged based on the ultimate limit state, there is a possibility of additional reduction of the safety factors through the reliability analysis.