• Title/Summary/Keyword: lithium salt

Search Result 147, Processing Time 0.025 seconds

The Holding Characteristics of the Glass Filter Separators of Molten Salt Electrolyte for Thermal Batteries (열전지용 용융염 전해질의 유리필터분리판의 담지특성)

  • Cho, Kwang-Youn;Riu, Doh-Hyung;Huh, Seung-Hun;Shin, Dong-Geun;Kim, Hyoun-Ee;Cheong, Hae-Won;Cho, Sung-Baek
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.8
    • /
    • pp.464-471
    • /
    • 2008
  • The electrolyte separator for thermal battery should be easily handled and loaded a large amount of the molten salt. Ceramic fibers, especially fibrous commercial glass filters were used as an electrolyte separator and the lithium based molten salts were infiltrated into the ceramic filters. The pore structures of the ceramic filter and the melting properties of the lithium salts affected to the electrolyte loading and leakage. During the infiltration, ions of $Li^+$ and $F^-$ in the molten salts were reacted with the glass fiber and caused to be weaken the fiber strength.

A Review on Lithium Recovery by Membrane Process (멤브레인 공정에 의한 리튬 회수에 대한 총설)

  • Kim, Esther;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.5
    • /
    • pp.315-326
    • /
    • 2021
  • Lithium ion battery (LIB) demands increase every year globally to reduce the burden on fossil fuels. LIBs are used in electric vehicles, stationary storage systems and various other applications. Lithium is available in seawater, salt lakes, and brines and its extraction using environmentally friendly and inexpensive methods will greatly relieve the pressure in lithium mining. Membrane separation processes, mainly nanofiltration (NF), is an effective way for the separation of lithium metal from solutions. Electrodialysis and electrolysis are other separation processes used for lithium separation. The process of reverse osmosis (RO) is already a well-established method for the desalination of seawater; therefore, modifying RO membranes to target lithium metals is an excellent alternative method in which the only bottleneck is the interfering presence of other metal elements in the solution. Selectively removing lithium by finding or developing suitable NF membranes can be challenging, but it is nonetheless an exciting area of research. This review discusses in detail about lithium recovery via nanofiltration, electrodialysis, electrolysis and other processes.

A Study on Surface Corrosion of Compressed Chip of Al-lithium Alloy according to the Packing Method (포장방법에 따른 Al-Li합금 압축칩 표면부식에 관한 연구)

  • Lee, In-Su;Kim, Hae-Ji;Kim, Deok-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.137-141
    • /
    • 2012
  • In order to increase recyclability of new material, aluminium-lithium alloy(Al2050-T84), the chip is compressed in the type of cylinder after machining. This study is to review the effect of environmental condition such as temperature change and salt during the transportation by sea on the corrosion at the surface and inside of the compressed chip, and an effective packing method is presented in this paper.

Behavior of $Li^{+}$ in PAN/PVDF based Polymer Electrolyte for Lithium Polymer Battery (리튬 폴리머전지용 PAN/PVDF계 고분자 전해질의 리튬 이온 거동)

  • 이재안;김상기;김종욱;구할본;박계춘
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.540-543
    • /
    • 2000
  • The purpose of this study is to research and develop solid polymer electrolyte(SPE) for Li polymer battery. The temperature dependence of conductivity, impedance spectroscopy and electrochemical properties of PAN/PVDF electrolytes as a function of a mixed ratio were reported for PAN/PVDF based polymer electrolyte films, which were prepared by thermal gellification method of preweighed PAN/PVDF, plasticizer and Li salt. The conductivity of PAN/PVDF electrolytes was $10^{-3}$S/cm. $PAN_{10}$$PVDF_{10}$$LiClO_4$$PC_{5}$$EC_{5}$ electrolyte has the better conductivity compared to others. The interfacial resistance behavior between the lithium electrode and PAN/PVDF based polymer electrolyte has also been investigated and compare with that between the lithium electrode and the PAN/PVDF based polymer electrolyte.

  • PDF

Syntheses of Conjugated Dienes from 1-Alkenylboronic Acids by Palladium (II) Salt

  • Kim, Jin-Il;Lee, Jong-Tae;Yeo, Kyu-Dong
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.6
    • /
    • pp.366-369
    • /
    • 1985
  • The reactions of (E)-1-hexenylboronic acid (1) or (E)-${\beta}$-phenylethenylboronic acid (2) with various olefins in acetonitrile at room temperature in the presence of lithium palladium chloride and triethylamine gave the corresponding (E, E)-conjugated dienes stereospecifically in good yields. (E)-${\beta}$-Phenylethenylboronic acid (2) was more reactive than (E)-1-hexenylboronic acid (1) in these vinylations. And these vinylations were also carried out catalytically when 10 mol % of lithium palladium chloride and cupric chloride, as the reoxidant of palladium, or 10 mol % of palladium acetate and mercuric acetate were added instead of stoichiometric amount of lithium palladium chloride.

A Study on the Reaction Characteristics of Rare Earth Oxides with Lithium Oxide in LiCl Molten Salt (LiCl 용융염 중에서 희토류 산화물과 산화리튬의 반응특성에 관한 연구)

  • 오승철;박성빈;김상수;도재범;박성원
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.447-452
    • /
    • 2003
  • We had clarified the reactions of the rare earth oxides($RE_2O_3$) with lithium oxide produced in lithium reduction process of oxide fuels. Oxides of scandium, yttrium, praseodymium, neodymium, samarium, europium, gadolinium, ytterbium and lutetium reacted with lithium oxide in the higher concentration than the respective certain critical concentration of lithium oxide and formed complex oxides($LiREO_2$). The critical lithium oxide concentrations for the formation of complex oxides of scandium, yttrium, praseodymium, neodymium, samarium, europium, gadolinium, ytterbium and lutetium oxide were respectively 0.1 wt%, 1.9 wt%, 5.3 wt%, 5.0 wt%, 3.0 wt%, 3.9 wt% 2.9 wt%, 2.6 wt% and 0.3 wt%. Cerium and lanthanum oxide did not react with lithium oxide. These complex oxides obtained from experiments have limited solubility in lithium chloride at $650^{\circ}C$.

  • PDF

Corrosion Behavior of Inconel Alloys in a Hot Lithium Molten Salt under an Oxidizing Atmosphere (고온 리튬용융염계 산화분위기에서 Inconel 합금의 부식거동)

  • Cho, Soo-Hang;Seo, Chung-Seok;Yoon, Ji-Sup;Park, Seoung-Won
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.557-563
    • /
    • 2006
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Inconel 713LC, MA 754, X-750 and 718 in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere was investigated at $650^{\circ}C$ for $72{\sim}216$ hours. Inconel 713LC alloy showed the highest corrosion resistance among the examined alloys. Corrosion products of Inconel 713LC were $Cr_2O_3,\;NiCr_2O_4$ and NiO, and those of Inconel MA 754 were $Cr_2O_3\;and\;Li_2Ni_8O_{10}$ while $Cr_2O_3,\;NiFe_2O_4\;and\;CrNbO_4$ were produced from Inconel 718. Also, corrosion products of Inconel X-750 were found to be $Cr_2O_3,\;NiFe_2O_4\;and\;(Cr,Nb,Ti)O_2$. Inconel 713LC showed local corrosion behavior and Inconel MA 754, 718, X-750 showed uniform corrosion behavior.