• Title/Summary/Keyword: lithium manganese oxide

Search Result 51, Processing Time 0.027 seconds

Effects of Reaction Parameters on the Preparation of LiMn2O4 for Lithium-Ion Batteries by SHS (리튬이온전지용 LiMn2O4분말의 자전연소합성시 반응변수의 영향)

  • Jang, Chang-Hyun;Nersisyan Hayk;Won, Chang-Whan;Kwon, Hyuk-Sang
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.588-593
    • /
    • 2006
  • Spinel phase $LiMn_2O_4$ is of great interest as cathode materials for lithium-ion batteries. In this study, SHS (Self propagating High-temperature Synthesis) method to synthesize spinel $LiMn_2O_4$ directly from lithium nitrate, manganese oxide, manganese and sodium chloride were investigated. The influence of Li/Mn ratio, the heat-treated condition of product have been explored. The resultant $LiMn_2O_4$ synthesized under the optimum synthesis conditions shows perfect spinel structure, uniform particle size and excellent electrochemical performances.

Electrochemical properties of all solid state Li/LiPON/Sn-substituted LiMn2O4 thin film batteries

  • Kong, Woo-Yeon;Yim, Hae-Na;Yoon, Seok-Jin;Nahm, Sahn;Choi, Ji-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.409-409
    • /
    • 2011
  • All solid-state thin film lithium batteries have many applications in miniaturized devices because of lightweight, long-life, low self-discharge and high energy density. The research of cathode materials for thin film lithium batteries that provide high energy density at fast discharge rates is important to meet the demands for high-power applications. Among cathode materials, lithium manganese oxide materials as spinel-based compounds have been reported to possess specific advantages of high electrochemical potential, high abundant, low cost, and low toxicity. However, the lithium manganese oxide has problem of capacity fade which caused by dissolution of Mn ions during intercalation reaction and phase instability. For this problem, many studies on effect of various transition metals have been reported. In the preliminary study, the Sn-substituted LiMn2O4 thin films prepared by pulsed laser deposition have shown the improvement in discharge capacity and cycleability. In this study, the thin films of LiMn2O4 and LiSn0.0125Mn1.975O4 prepared by RF magnetron sputtering were studied with effect of deposition parameters on the phase, surface morphology and electrochemical property. And, all solid-state thin film batteries comprised of a lithium anode, lithium phosphorus oxy-nitride (LiPON) solid electrolyte and LiMn2O4-based cathode were fabricated, and the electrochemical property was investigated.

  • PDF

Selective doping of Li-rich layered oxide cathode materials for high-stability rechargeable Li-ion batteries

  • Han, Dongwook;Park, Kwangjin;Park, Jun-Ho;Yun, Dong-Jin;Son, You-Hwan
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.180-186
    • /
    • 2018
  • We report the discovery of Li-rich $Li_{1+x}[(Ni_{0.225}Co_{0.15}Mn_{0.625})_{1-y}V_y]O_2$ as a cathode material for rechargeable lithium-ion batteries in which a small amount of tetravalent vanadium ($V^{4+}$) is selectively and completely incorporated into the manganese sites in the lattice structure. The unwanted oxidation of vanadium to form a $V_2O_5-like$ secondary phase during high-temperature crystallization is prevented by uniformly dispersing the vanadium ions in coprecipitated $[(Ni_{0.225}Co_{0.15}Mn_{0.625})_{1-y}V_y](OH)_2$ particles. Upon doping with $V^{4+}$ ions, the initial discharge capacity (>$275mA\;h\;g^{-1}$), capacity retention, and voltage decay characteristics of the Li-rich layered oxides are improved significantly in comparison with those of the conventional undoped counterpart.

Trend on the Recycling Technologies for the used Manganese Dry Battery by the Patent Analysis (특허(特許)로 본 폐망간전지 재활용(再活用) 기술(技術) 동향(動向))

  • Shon, Jeong-Soo;Kang, Kyung-Seok;Han, Hye-Jung;Kim, Tae-Hyun;Shin, Shun-Myung
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.76-84
    • /
    • 2008
  • There are several kinds of battery such as zinc-air battery, lithium battery, manganese dry battery, silver oxide battery, mercury battery, sodium-sulphur battery, lead battery, nickel-hydrogen secondary battery, nickel-cadmium battery, lithium ion battery and alkaline battery, etc. These days it has been widely studied for the recycling technologies of the used battery from view points of economy and efficiency. In this paper, patents on the recycling technologies of the used manganese dry battery were analyzed. The range of search was limited in the open patents of USA (US), European Union (EP), Japan (JP), and Korea (KR) from 1986 to 2006. Patents were collected using key-words searching and filtered by filtering criteria. The trends of the patents were analyzed by the years, countries, companies, and technologies.

Synthesis of Manganese Oxide Coated Graphite Sheet for Zinc-Ion Batteries with Improved Energy Storage Performance (아연-이온 배터리의 에너지 저장 성능 향상을 위한 망간산화물이 코팅된 흑연시트의 제조)

  • Lee, Young-Geun;An, Geon-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.31 no.2
    • /
    • pp.68-74
    • /
    • 2021
  • Zinc-ion Batteris (ZIBs) are recently being considered as energy storage devices due to their high specific capacity and high safety, and the abundance of zinc sources. Especially, ZIBs can overcome the drawbacks of conventional lithium ion batteris (LIBs), such as cost and safety issues. However, in spite of their advantages, the cathode materials under development are required to improve performance of ZIBs, because the capacity and cycling stability of ZIBs are mainly influenced by the cathode materials. To design optimized cathode materials for high performance ZIBs, a novel manganese oxide (MnO2) coated graphite sheet is suggested herein with improved zinc-ion diffusion capability thanks to the uniformly decorated MnO2 on the graphite sheet surface. Especially, to optimize MnO2 on the graphite sheet surface, amounts of percursors are regulated. The optimized MnO2 coated graphite sheet shows a superior zinc-ion diffusion ability and good electrochemical performance, including high specific capacity of 330.8 mAh g-1 at current density of 0.1 A g-1, high-rate performance with 109.4 mAh g-1 at a current density of 2.0 A g-1, and remarkable cycling stability (82.2 % after 200 cycles at a current density of 1.0 A g-1). The excellent electrochemical performance is due to the uniformly decorated MnO2 on the graphite sheet surface, which leads to excellent zinc-ion diffusion ability. Thus, our study can provide a promising strategy for high performance next-generation ZIBs in the near future.

Characteristics of Electric Conductivity and Adhesion with Current Collector According to Composition of $LiMn_2O_4$ Cathode (망간산화물 정극의 합제조성에 따른 전자전도특성 및 집전체와의 접착특성)

  • Eom Seung-Wook;Doh Chil-Hoon;Moon Seong-In
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • Composite ratio of $LiMn_2O_4$ in cathode was optimized as function of specific surface area. Binder has to be used as possible as little, and it should maintain adhesive property between cathode composite and current collector even though in electrolytes. For this purpose, We used 'Hot Roll Pressing' method, and it was effective. To prevent separation of cathode composite from current collector, PVDF(Polyvinylidenefluoride) has to be mixed more than $1.1\%$ in weight ratio to sum of surface area of lithium manganese oxide and conducting agents. Specific internal resistance was reduced as by increasing electrical conductivity of cathode. And Ratio of 2C rate discharge capacity to 0.2C rate discharge capacity was increased by $17\%$, as increasing electrical conductivity from 0.019 mS/cm to 0.036 mS/cm.

Effect of Calcination Temperature on the Structure and Electrochemical Performance of LiMn1.5Ni0.5O4 Cathode Materials

  • Ju, Seo Hee;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.59-62
    • /
    • 2013
  • Spinel $LiMn_{1.5}Ni_{0.5}O_4$ cathode powders with different morphologies were synthesized by a co-precipitation method using oxalic acid. The calcination temperature affected the morphologies, crystalline structure and electrochemical properties of the $LiMn_{1.5}Ni_{0.5}O_4$ powders. The $LiMn_{1.5}Ni_{0.5}O_4$ powders obtained at a calcination temperature of $850^{\circ}C$ exhibited the highest initial discharge capacity with good capacity retention and high rate capability.

Change of Electrochemical Characteristics Due to the Fe Doping in Lithium Manganese Oxide Electrode

  • Ju Jeh Beck;Kang Tae Young;Cho Sung Jin;Sohn Tae Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.3
    • /
    • pp.131-137
    • /
    • 2004
  • Sol-gel method which provides better electrochemical and physiochemical properties compared to the solid-state method was used to synthesize the material of $LiFe_yMn_{2-y}O_4$. Fe was substituted to increase the structural stability so that the effects of the substitution amount and sintering temperature were analyzed. XRD was used for the structural analysis of produced material, which in turn, showed the same cubic spinel structure as $LiMn_2O_4$ despite the substitution of $Fe^{3+}$. During the synthesis of $LiFe_yMn_{2-y}O_4$, as the sintering temperature and the doping amount of Fe(y=0.05, 0.1, 0.2)were increased, grain growth proceeded which in turn, showed a high crystalline and a large grain size, certain morphology with narrow specific surface area and large pore volume distribution was observed. In order to examine the ability for the practical use of the battery, charge-discharge tests were undertaken. When the substitution amount of $Fe^{3+}\;into\;LiMn_2O_4$ increased, the initial discharge capacity showed a tendency to decrease within the region of $3.0\~4.2V$ but when charge-discharge processes were repeated, other capacity maintenance properties turned out to be outstanding. In addition, when the sintering temperature was $800\~850^{\circ}C$, the initial capacity was small but showed very stable cycle performance. According to EVS(electrochemical voltage spectroscopy) test, $LiFe_yMn_{2-y}O_4(y=0,\;0.05,\;0.1,\;0.2)$ showed two plateau region and the typical peaks of manganese spinel structure when the substitution amount of $Fe^{3+}$ increased, the peak value at about 4.15V during the charge-discharge process showed a tendency to decrease. From the previous results, the local distortion due to the biphase within the region near 4.15V during the lithium extraction gave a phase transition to a more suitable single phase. When the transition was derived, the discharge capacity decreased. However the cycle performance showed an outstanding result.

Effect of Manganese Vanadate Formed on the Surface of Spinel Lithium Manganese Oxide Cathode on High Temperature Cycle Life Performance

  • Kim, Jun-Il;Park, Sun-Min;Roh, Kwang Chul;Lee, Jae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2573-2576
    • /
    • 2013
  • Rate capability and cyclability of $LiMn_2O_4$ should be improved in order to use it as a cathode material of lithium-ion batteries for hybrid-electric-vehicles (HEV). To enhance the rate capability and cyclability of $LiMn_2O_4$, it was coated with $MnV_2O_6$ by a sol-gel method. A $V_2O_5$ sol was prepared by a melt-quenching method and the $LiMn_2O_4$ coated with the sol was heat-treated to obtain the $MnV_2O_6$ coating layer. Crystal structure and morphology of the samples were examined by X-ray diffraction, SEM and TEM. The electrochemical performances, including cyclability at $60^{\circ}C$, and rate capability of the bare and the coated $LiMn_2O_4$ were measured and compared. Overall, $MnV_2O_6$ coating on $LiMn_2O_4$ improves the cyclability at high temperature and rate capability at room temperature at the cost of discharge capacity. The improvement in cyclability at high temperature and the enhanced rate capability is believed to come from the reduced contact between the electrode, and electrolyte and higher electric conductivity of the coating layer. However, a dramatic decrease in discharge capacity would make it impractical to increase the coating amount above 3 wt %.