• Title/Summary/Keyword: lithium chloride

Search Result 120, Processing Time 0.024 seconds

Imidazolium Chloride-LiCl Melts as Efficient Solvents for Cellulose

  • Agarwal, Shalu;Hossain, Anwar Md.;Choi, Young-Seop;Cheong, Minserk;Jang, Ho Gyeom;Lee, Je Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3771-3776
    • /
    • 2013
  • 1-Alkyl-3-methylimidazolium chloride-LiCl melts were prepared from the reaction of 1-alkyl-3-methylimidazolium chloride ([RMIm]Cl; R=allyl or n-butyl) and lithium chloride, and their ability to dissolve cellulose was evaluated. The solubility of cellulose was greatly increased to 320% when [RMIm]Cl was replaced by [RMIm][$LiCl_2$]. Dissolved cellulose in LiCl/[RMIm]Cl melts was successfully regenerated by adding water and LiCl/[RMIm]Cl melts were easily recovered by removing water. As supported by the computational results, the higher solubility of cellulose in [RMIm][$LiCl_2$] can be ascribed to the increased bond distance between anion and C(2)-H of the imidazolium ring compared with that in [RMIm]Cl, thereby resulting in the increased interaction between $[LiCl_2]^-$ and the hydroxyl groups of cellulose.

Solvent Extraction of Lithium Ion in Aqueous Solution Using TTA and TOPO (TTA와 TOPO를 이용한 수용액 중의 리튬이온 용매추출)

  • Lee, Jeon-Kyu;Jeong, Sang-Gu;Koo, Su-Jin;Kim, Si-Young;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.53-57
    • /
    • 2013
  • For the purpose of development of the extraction process of lithium ion from concentrated water eliminated from desalination process, an experimental research on the solvent extraction of lithium ion from aqueous solutions was performed. The effects of operating parameters, such as concentration of extractant, ratio of extracting solution/aqueous solution, pH of aqueous solution, were examined. The effect of sodium chloride, the major component of sea water, was also examined. Lithium ion in aqueous solutions of pH=10.2~10.6 adjusted by ammonia solution was most effectively extracted by extracting solution composed of 0.02 M TTA and 0.04 M TOPO in kerosine. The addition of sodium chloride in lithium aqueous solution significantly interfered the extraction of lithium ion.

High-purity Lithium Carbonate Manufacturing Technology from the Secondary Battery Recycling Waste using D2EHPA + TBP Solvent (이차전지 폐액으로부터 D2EHPA + TBP solvent를 활용한 탄산리튬 제조기술)

  • Dipak Sen;Hee-Yul Yang;Se-Chul Hong
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.21-32
    • /
    • 2023
  • Because the application of lithium has gradually increased for the production of lithium ion batteries (LIBs), more research studies about recycling using solvent extraction (SX) should focus on Li+ recovery from the waste solution obtained after the removal of the valuable metals nickel, cobalt and manganese (NCM). The raffinate obtained after the removal of NCM metal contains lithium ions and other impurities such as Na ions. In this study, we optimized a selective SX system using di-(2-ethylhexyl) phosphoric acid (D2EHPA) as the extractant and tri-n-butyl phosphate (TBP) as a modifier in kerosene for the recovery of lithium from a waste solution containing lithium and a high concentration of sodium (Li+ = 0.5 ~ 1 wt%, Na+ = 3 ~6.5 wt%). The extraction of lithium was tested in different solvent compositions and the most effective extraction occurred in the solution composed of 20% D2EHPA + 20% TBP + and 60% kerosene. In this SX system with added NaOH for saponification, more than 95% lithium was selectively extracted in four extraction steps using an organic to aqueous ratio of 5:1 and an equilibrium pH of 4 ~ 4.5. Additionally, most of the Na+ (92% by weight) remained in the raffinate. The extracted lithium is stripped using 8 wt% HCl to yield pure lithium chloride with negligible Na content. The lithium chloride is subsequently treated with high purity ammonium bicarbonate to afford lithium carbonate powder. Finally the lithium carbonate is washed with an adequate amount of water to remove trace amounts of sodium resulting in highly pure lithium carbonate powder (purity > 99.2%).

Lithium Chloride-Imidazolium Chloride Melts for the Coupling Reactions of Propylene Oxide and CO2

  • Nguyen, Ly Vinh;Lee, Bo-Ra;Nguyen, Dinh Quan;Kang, Min-Jung;Lee, Hyun-Joo;Ryu, Seol-Ryu;Kim, Hoon-Sik;Lee, Je-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.148-152
    • /
    • 2008
  • A series of lithium chloride-imidazolium chloride (LiCl-[imidazolium]Cl) melts were prepared and their catalytic activities were evaluated for the coupling reactions of propylene oxide and CO2. At the constant mole of LiCl, the catalytic activities of LiCl-[imidazolium]Cl melts increased with increasing molar ratio of [imidazolium]Cl/LiCl up to 2, but thereafter decreased rapidly. The variation of alkyl groups on the imidazolium ring showed a negligible effect on the catalytic activity, but the number of alkyl groups present on the imidazolium cation exerts a pronounced effect. Catalysis and electrospray ionization tandem mass spectral analysis results of LiCl-[imidazolium]Cl melts imply that the activity of the melt is strongly related to the amount of LiCl2- generated from the melt.

Transfer characteristics of a lithium chloride-potassium chloride molten salt

  • Mullen, Eve;Harris, Ross;Graham, Dave;Rhodes, Chris;Hodgson, Zara
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1727-1732
    • /
    • 2017
  • Pyroprocessing is an alternative method of reprocessing spent fuel, usually involving the dissolving spent fuel in a molten salt media. The National Nuclear Laboratory designed, built, and commissioned a molten salt dynamics rig to investigate the transfer characteristics of molten lithium chloride-potassium chloride eutectic salt. The efficacy and flow characteristics of a high-temperature centrifugal pump and argon gas lift were obtained for pumping the molten salt at temperatures up to $500^{\circ}C$. The rig design proved suitable on an industrial scale and transfer methods appropriate for use in future molten salt systems. Corrosion within the rig was managed, and melting techniques were optimized to reduce stresses on the rig. The results obtained improve the understanding of molten salt transport dynamics, materials, and engineering design issues and support the industrialization of molten salts pyroprocessing.

Reaction of Lithium Cyanoaluminum Hydride with Selected Organic Compounds Containing Representative Functional Groups. Comparison of Reducing Characteristics between Lithium and Sodium Cyanoaluminum Hydrides

  • Cha, Jin-Soon;Yu, Se-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1588-1592
    • /
    • 2009
  • Lithium cyanoaluminum hydride (LCAH) was prepared by the metal cation exchange reaction of sodium cyanoaluminum hydride with lithium chloride in tetrahydrofuran. The reducing characteristics of LCAH were explored systematically by the reaction with selected organic compounds containing representative functional groups under the standardized conditions (tetrahydrofuran, 0 ${^{\circ}C}$). The reducing ability of LCAH was also compared with of the sodium derivative, sodium cyanoaluminum hydride (SCAH). Generally, the reducing behavior of LCAH resembles that of SCAH closely, but the reactivity of LCAH toward representative organic functional groups appeared to be stronger than that of SCAH. Thus, the regent reduces carbonyl compounds, epoxides, amides, nitriles, disulfides, carboxylic acids and their acyl derivatives to the corresponding alcohols or amines, at a relatively faster rate than that of SCAH. The cyano substitution, a strong election-withdrawing group, diminishes the reducing power of the parent metal aluminum hydrides and hence effects the alteration of their reducing characteristics.

Stydies on the Selective Screening Method of Bifidobacteria Used in Yoghurt (호상 요구르트 제품에 이용되는 Bifidobacteria 의 선택적 검출 방법)

  • 박희경;허태련
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.2
    • /
    • pp.214-219
    • /
    • 1995
  • In fermentation of dairy products, bifidobacteria is used in conjunction with other lactic acid bacteria, such as L. acidophilus, L. bulgaricus and S. thermophilus, rendering the enumeration of bifidobacteria difficult. In order to develop optimum conditions for selective enumeration of bifidobacteria, we examined MIC of several antibiotics against various bifidobacteria and other lactic acid bacteria. The growth of L. acidophilus, L. bulgaricus and S. thermophilus were inhibited by lithium chloride at the concentration of less than 4 mg/ml, whereas growth inhibition of bifidobacteria occurred at concentrations over 6-10 mg/ml. Tetracycline and chloramphenicol were also found to selectively inhibit growth of other lactic acid bacteria at the concentration of 1-3 $\mu$g/ml. Addition of 6 mg/ml lithium chloride, 1 $\mu$g/ml, tetracycline or 3 $\mu$g/ml chloramphenicol to medium was found to be optimal for selective enumeration of bifidobacteria. By using these three inhibitory chemicals in the TPY medium, higher number of bifidobacteria were selectively isolated than with NPNL agar and LP agar.

  • PDF