• Title/Summary/Keyword: lithium battery cathode

Search Result 369, Processing Time 0.027 seconds

The Effects of the Nano-sized Adsorbing Material on the Electrochemical Properties of Sulfur Cathode for Lithium/Sulfur Secondary Battery (나노 흡착제가 Li/S 이차전지용 유황양극의 전기화학적 특성에 미치는 영향)

  • Song, Min-Sang;Han, Sang-Choel;Kim, Hyun-Seok;Ahn, Hyo-Jun;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.4
    • /
    • pp.259-269
    • /
    • 2002
  • A battery based on the lithium/elemental sulfur redox couple has the advantage of high theoretical specific capacity of 1,675 mAh/g-sulfur. However, Li/S battery has bad cyclic durability at room temperature due to sulfur active material loss resulting from lithium polysulfide dissolution. To improve the cycle life of Li/S battery, PEGDME (Poly(ethylene glycol) dimethyl ether) 500 containing 1M LiTFSI salt which has high viscosity was used as electrolyte to retard the polysulfide dissolution and nano-sized $Mg_{0.6}Ni_{0.4}O$ was added to sulfur cathode as additive to adsorb soluble polysulfide within sulfur cathode. From experimental results, the improvement of the capacity and cycle life of Li/S battery was observed( maximum discharge capacity : 1,185 mAh/g-sulfur, C50/C1 = 85 % ). Through the charge-discharge test, we knew that PEGDME 500 played a role of preventing incomplete charge-discharge $behavior^{1,2)$. And then, in sulfur dissolution analysis and rate capability test, we first confirmed that nano-sized $Mg_{0.6}Ni_{0.4}O$ had polysulfide adsorbing effect and catalytic effect of promoting the Li/S redox reaction. In addition, from BET surface area analysis, we also verified that it played the part of increasing the porosity of sulfur cathode.

Deposition of Functional Organic and Inorganic Layer on the Cathode for the Improved Electrochemical Performance of Li-S Battery

  • Sohn, Hiesang
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.483-489
    • /
    • 2017
  • The loss of the sulfur cathode material through dissolution of the polysulfide into electrolyte causes a significant capacity reduction of the lithium-sulfur cell during the charge-discharge reaction, thereby debilitating the electrochemical performance of the cell. We addressed this problem by using a chemical and physical approach called reduction of polysulfide dissolution through direct coating functional inorganic (graphene oxide) or organic layer (polyethylene oxide) on electrode, since the deposition of external functional layer can chemically interact with polysulfide and physically prevent the leakage of lithium polysulfide out of the electrode. Through this approach, we obtained a composite electrode for a lithium-sulfur battery (sulfur: 60%) coated with uniform and thin external functional layers where the thin external layer was coated on the electrode by solution coating and drying by a subsequent heat treatment at low temperature (${\sim}80^{\circ}C$). The external functional layer, such as inorganic or organic layer, not only alleviates the dissolution of the polysulfide electrolyte during the charging/discharging through physical layer formation, but also makes a chemical interaction between the polysulfide and the functional layer. As-formed lithium-sulfur battery exhibits stable cycling electrochemical performance during charging and discharging at a reversible capacity of 700~1187 mAh/g at 0.1 C (1 C = 1675 mA/g) for 30 cycles or more.

The Electrochemical Properties of SnO2 as Cathodes for Lithium Air Batteries

  • Lee, Yoon-Ho;Park, Heai-Ku
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.4
    • /
    • pp.164-171
    • /
    • 2019
  • Nano-sized $SnO_2$ powders were synthesized via a solvent thermal reaction using $SnClO_4$, NaOH, and ethylene glycol at $150^{\circ}C$. TGA, SEM, FT-IR, XRD, and Potentiostat/Galvanostat were employed to investigate the chemical and electrochemical characteristics of the synthesized $SnO_2$. The structure of $SnO_2$ was amorphous, and when heat treated at $500^{\circ}C$, it was transformed into a crystalline structure. The morphology obtained by SEM micrographs of the as-synthesized $SnO_2$ showed powder features that had diameters ranging 100 to 200 nm. The electrochemical performance of the crystalline $SnO_2$ as a Li-air battery cathode was better than that of the amorphous $SnO_2$. The specific capacity of the crystalline $SnO_2$ was at least 350 mAh/g at 10 mA/g discharge rate. However, there was some capacity loss of all the cells during the consecutive cycles. Keywords : Lithium-Air Battery.

Fabrication of LiNiO2 using NiSO4 Recovered from NCM (Li[Ni,Co,Mn]O2) Secondary Battery Scraps and Its Electrochemical Properties (NCM(Li[Ni,Co,Mn]O2)계 폐 리튬이차전지로부터 NiSO4의 회수와 이를 이용한 LiNiO2 제조 및 전기화학적 특성)

  • Kwag, Yong-Gyu;Kim, Mi-So;Kim, Yoo-Young;Choi, Im-Sic;Park, Dong-Kyu;Ahn, In-Sup;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.286-293
    • /
    • 2014
  • The electrochemical properties of cells assembled with the $LiNiO_2$ (LNO) recycled from cathode materials of waste lithium secondary batteries ($Li[Ni,Co,Mn]O_2$), were evaluated in this study. The leaching, neutralization and solvent extraction process were applied to produce high-purity $NiSO_4$ solution from waste lithium secondary batteries. High-purity NiO powder was then fabricated by the heat-treatment and mixing of the $NiSO_4$ solution and $H_2C_2O_4$. Finally, $LiNiO_2$ as a cathode material for lithium ion secondary batteries was synthesized by heat treatment and mixing of the NiO and $Li_2CO_3$ powders. We assembled the cells using the $LiNiO_2$ powders and evaluated the electrochemical properties. Subsequently, we evaluated the recycling possibility of the cathode materials for waste lithium secondary battery using the processes applied in this work.

Development of Advanced Polymeric Binders for High Voltage LiNi0.5Mn1.5O4 cathodes in Lithium-ion batteries (고전압 LiNi0.5Mn1.5O4 양극 고성능 바인더 개발 연구)

  • Dae Hui Yun;Sunghun Choi
    • Journal of Industrial Technology
    • /
    • v.43 no.1
    • /
    • pp.43-48
    • /
    • 2023
  • Spinel LiNi0.5Mn1.5O4 (LNMO) has been considered as one of most promising cathode material, because of its low-cost and competitive energy density. However, 4.7V vs. Li/Li+ of high operating potential facilitates electrolyte degradation on cathode-electrolyte interface during charge-discharge process. In particular, commercial polyvinylidene fluoride (PVDF) is not sutaible for LNMO cathode binder because its weak van der waals force induces thick and non-uniform coverage on the cathode surface. In this review, we study high performance binders for LNMO cathode, which forms uniform coating layer to prevent direct contact between electrolyte and LNMO particle as well as modifying high quality cathode electrolyte interphase, improved cell performace.

Preparation and Characteristics of Li/$V_6O_{13}$ Secondary Battery (Li/$V_6O_{13}$ 2차전지의 제조 및 특성)

  • Moon, S.I.;Jeong, E.D.;Doh, C.H.;Yun, M.S.;Yum, D.H.;Chung, M.Y.;Park, C.J.;Youn, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.136-140
    • /
    • 1992
  • The purpose of this research is to develop the lithium secondary battery. This paper describes the preparation, electrochemical properties of nontstoichiometric(NS)-$V_6O_{13}$ and characteristics of Li/$V_6O_{13}$ secondary battery. NS-$V_6O_{13}$ was prepared by thermal decomposition of $NH_4VO_3$ under Ar stream of 140ml/min~180ml/min flow rate. And then, this NS-$V_6O_{13}$ was used for cathode active material. Cathode sheet was prepared by compressing the composite of NS-$V_6O_{13}$, acetylene black(A.B) and teflon emulsion (T.E). Characteristics of the test cell are summarised as follows. Oxidation capacity of NS-$V_6O_{13}$ was about 20% less than its reduction capacity. A part of NS-$V_6O_{13}$ cathode active material showed irreversible reaction in early charge-discharge cycle. This phenomena seems to be caused by irreversible incoporation/discoporation of lithium cation to/from NS-$V_6O_{13}$ host. Discharge characteristics curve of Li/$V_6O_{13}$ cell showed 4 potential plateaus. Charge-discharge capacity was declined in the beginning of cycling and slowly increased in company with increasing of coulombic efficiency. Energy density per weight of $V_6O_{13}$ cathode material was as high as 522Wh/kg~765Wh/kg.

  • PDF

Lithium Recovery from NCM Lithium Ion Battery by Hydrogen Reduction Followed by Water Leaching (NCM계 리튬이온 배터리 양극재의 수소환원과 수침출에 의한 리튬 회수)

  • So-Yeong Lee;So-Yeon Lee;Dae-Hyeon Lee;Ho-Sang Sohn
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.15-21
    • /
    • 2024
  • The demand for electric vehicles powered by lithium-ion batteries is continuously increasing. Recovery of valuable metals from waste lithium-ion batteries will be necessary in the future. This research investigated the effect of reaction temperature on the lithium recovery ratio from hydrogen reduction followed by water leaching from lithium-ion battery NCM-based cathode materials. As the reaction temperature increased, the weight loss ratio observed after initiation increased rapidly owing to hydrogen reduction of NiO and CoO; at the same time, the H2O amount generated increased. Above 602 ℃, the anode materials Ni and Co were reduced and existed in the metallic phases. As the hydrogen reduction temperature was increased, the Li recovery ratio also increased; at 704 ℃ and above, the Li recovery ratio reached a maximum of approximately 92%. Therefore, it is expected that Li can be selectively recovered by hydrogen reduction as a waste lithium-ion battery pretreatment, and the residue can be reprocessed to efficiently separate and recover valuable metals.

Lithium Air Battery: Alternate Energy Resource for the Future

  • Zahoor, Awan;Christy, Maria;Hwang, Yun-Ju;Nahm, Kee-Suk
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.14-23
    • /
    • 2012
  • Increasing demand of energy, the depletion of fossil fuel reserves, energy security and the climate change have forced us to look upon alternate energy resources. For today's electric vehicles that run on lithium-ion batteries, one of the biggest downsides is the limited range between recharging. Over the past several years, researchers have been working on lithium-air battery. These batteries could significantly increase the range of electric vehicles due to their high energy density, which could theoretically be equal to the energy density of gasoline. Li-air batteries are potentially viable ultra-high energy density chemical power sources, which could potentially offer specific energies up to 3000 $Whkg^{-1}$ being rechargeable. This paper provides a review on Lithium air battery as alternate energy resource for the future.

Electrochemical Characteristics of Carbon-coated Si/Cu/graphite Composite Anode

  • Kim, Hyung-Sun;Chung, Kyung-Yoon;Cho, Won-Il;Cho, Byung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1607-1610
    • /
    • 2009
  • The carbon-coated Si/Cu powder has been prepared by mechanical ball milling and hydrocarbon gas decomposition methods. The phase of Si/Cu powder was analyzed using X-ray diffraction (XRD), dispersive Raman spectroscopy, electron probe microanalysis (EPMA) and transmission electron microscope (TEM). The carbon-coated Si/Cu powders were used as anode active material for lithium-ion batteries. Their electrochemical properties were investigated by charge/discharge test using commercial LiCo$O_2$ cathode and lithium foil electrode, respectively. The surface phase of Si/Cu powders consisted of carbon phase like the carbon nanotubes (CNTs) with a spacing layer of 0.35 nm. The carbon-coated Si/Cu/graphite composite anode exhibited a higher capacity than commercial graphite anode. However, the cyclic efficiency and the capacity retention of the composite anode were lower compared with graphite anode as cycling proceeds. This effect may be attributed to some mass limitations in LiCo$O_2$ cathode materials during the cycling.

A Mechanism Study on Formation and Reduction of Residual Li of High Nickel Cathode for Lithium-ion Batteries (층상계 하이니켈 양극재의 잔류 리튬 생성 및 저감 메커니즘 연구)

  • MinWook, Pin;Beom Tak, Na;Tae Eun, Hong;Youngjin, Kim
    • Journal of Industrial Technology
    • /
    • v.42 no.1
    • /
    • pp.7-12
    • /
    • 2022
  • High nickel layered oxide cathodes are gaining increasing attention for lithium-ion batteries due to their higher energy density and lower cost compared to LiCoO2. However, they suffer from the formation of residual lithium on the surface in the form of LiOH and Li2CO3 on exposure to ambient air. The residual lithium causes notorious issues, such as slurry gelation during electrode preparation and gas evolution during cell cycling. In this review, we investigate the residual lithium issues through its impact on cathode slurry instability based on deformed polyvinylidene fluoride (PVdF) as well as its formation and reduction mechanism in terms of inherently off-stoichiometric synthesis of high nickel cathodes. Additionally, new analysis method with anhydrous methanol was introduced to exclude Li+/H+ exchange effect during sample preparation with distilled water. We hope that this review would contribute to encouraging the academic efforts to consider practical aspects and mitigation in global high-energy-density lithium-ion battery manufacturers.