• Title/Summary/Keyword: lithium batteries

Search Result 1,020, Processing Time 0.026 seconds

Technology Trends for Lithium Secondary Batteries (리튬 이차전지 기술 동향)

  • Y.H. Choi;H.S. Chung
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.5
    • /
    • pp.90-99
    • /
    • 2023
  • Recently, with the trend of information technology convergence and electrification, batteries are being widely used in fields such as industry, transportation, and specific applications. By 2030, the secondary battery market is expected to grow explosively by more than eight times compared with 2020 to $351.7 billion owing to the expanding adoption of electric vehicles. Depending on the electrochemical reactions in the electrode, a primary battery can only discharge through an irreversible reaction, while a secondary battery can be repeatedly charged and discharged using reversible reactions. According to the type of charge carrier ions, secondary batteries may be classified into those made of lithium, sodium, potassium, magnesium, and aluminum ions. We analyze the current status and technological issues of lithium-ion batteries, lithium-sulfur batteries, and solid-state batteries, which are representative examples of lithium secondary batteries. In addition, research trends in lithium secondary batteries are discussed.

Novel State-of-Charge Estimation Method for Lithium Polymer Batteries Using Electrochemical Impedance Spectroscopy

  • Lee, Jong-Hak;Choi, Woo-Jin
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.237-243
    • /
    • 2011
  • Lithium batteries are widely used in mobile electronic devices due to their higher voltage and energy density, lighter weight and longer life cycle when compared to other secondary batteries. In particular, a high demand for lithium batteries is expected for electric cars. In the case of the lithium batteries used in electric cars, driving distance must be calculated accurately and discharging should not be done below a level that makes it impossible to crank. Therefore, accurate information on the state-of-charge (SOC) becomes an essential element for reliable driving. In this paper, a novel method for estimating the SOC of lithium polymer batteries using AC impedance is proposed. In the proposed method, the parameters are extracted by fitting the measured impedance spectrum on an equivalent impedance model and the variation in the parameter values at each SOC is used to estimate the SOC. Also to shorten the long length of time required for the measurement of the impedance spectrum, a novel method is proposed that can extract the equivalent impedance model parameters of lithium polymer batteries with the impedance measured at only two specific frequencies. Experiments are conducted on lithium polymer batteries, with similar capacities, made by different manufacturers to prove the validity of the proposed method.

Electrochemical Properties of Binary Electrolytes for Lithium-sulfur Batteries

  • Kim, Hyung-Sun;Jeong, Chang-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3682-3686
    • /
    • 2011
  • The electrochemical properties of lithium-sulfur batteries with binary electrolytes based on DME and DOL, TEGDME and DOL mixed solvent containing $LiClO_4$, LiTFSI, and LiTF salts were investigated. The ionic conductivity of 1M LiTFSI and $LiClO_4$ electrolytes based on TEGDME and DOL increased as the volume ratio of DOL solvent increased, because DOL effectively reduces the viscosity of the above electrolytes medium under the same salts concentration. The first discharge capacity of lithium-sulfur batteries in the DME and DOL-based electrolyte followed this order: LiTFSI (1,000 mAh/g) > LiTF (850 mAh/g) > $LiClO_4$ (750 mAh/g). In case of the electrolyte based on TEGDME and DOL, the first discharge capacity of batteries followed this order: $LiClO_4$ (1,030 mAh/g) > LiTF (770 mAh/g) > LiTFSI (750 mAh/g). The cyclic efficiency of lithium-sulfur batteries at 1M $LiClO_4$ electrolytes is higher than that of batteries at other lithium salts-based electrolytes. Lithium-sulfur battery showed discharge capacity of 550 mAh/g until 20 cycles at all electrolytes based on DME and DOL solvent. By contrast, the discharge capacity of batteries was about 450 mAh/g at 1M LiTFSI and LiTF electrolytes based on TEGDME and DOL solvent after 20 cycles.

The Current Situation for Recycling of Lithium Ion Batteries

  • Hiroshi Okamoto;Lee, Sang-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.252-256
    • /
    • 2001
  • The rapid development of communication equipment and information processing technology has led to a constant improvement in cordless communication. Lithium ion batteries used in cellular phones and laptop computers, in particular, have been in the forefront of the above revolution. These batteries use high value added raw materials and have a high and stable energy output and are increasingly coming into common use. The development of the material for the negative terminal has led to an improvement in the quality and efficiency of the batteries, whereas a reduction in the cost of the battery by researching new materials for the positive anode has become a research theme by itself. These long life batteries, it is being increasingly realized, can have value added to them by recycling. Research is increasingly being done on recycling the aluminum case and the load casing for the negative diode. This paper aims to introduce the current situation of recycling of lithium ion batteries. 1. Introduction 2. Various types of batteries and the situation of their recycling and the facts regarding recycling. 3. Example of cobalt recycling from waste Lithium ion secondary cell. 3-1) Flow Chart of Lithium ion battery recycling 3-2) Materials that make a lithium ion secondary cell. 3-3) Coarse grinding of Lithium ion secondary cell, and stabilization of current discharge 3-4) Burning 3-5) Grinding 3-6) Magnetic Separation 3-7) Dry sieving 3-8) Dry Classifying 3-9) Content Ratio of recycled cobalt parts 3-10) Summary of the Line used for the recovery of Cobalt from waste Lithium ion battery. 4. Conclusion.

  • PDF

A Study on Long-Term Cycling Performance by External Pressure Change for Pouch-Type Lithium Metal Batteries

  • Seong-Ju Sim;Bong-Soo Jin;Jun-Ho Park;Hyun-Soo Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.314-320
    • /
    • 2024
  • Lithium dendrite formation is one of the most significant problems with lithium metal batteries. The lithium dendrite reduces the lithium metal batteries' cycling life and safety. To apply consistent external pressure to a lithium metal pouch cell, we design a press jig in this study. External pressure creates dense lithium morphology by preventing lithium dendrite formation. After 300 cycles at 1 C, the cells with the external pressure perform far better than the cells without it, with a cycling retention of 97.8%. The formation of stable lithium metal is made possible by external pressure, which also enhances safety and cyclability.

Solid Electrolyte Technologies for Next-Generation Lithium Secondary Batteries (차세대 리튬이차전지용 고체 전해질 기술)

  • Kim, K.M.;Oh, J.M.;Shin, D.O.;Kim, J.Y.;Lee, Y.G.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.76-86
    • /
    • 2021
  • Technologies for lithium secondary batteries are now increasingly expanding to simultaneously improve the safety and higher energy and power densities of large-scale battery systems, such as electric vehicles and smart-grid energy storage systems. Next-generation lithium batteries, such as lithium-sulfur (Li-S) and lithium-air (Li-O2) batteries by adopting solid electrolytes and lithium metal anode, can be a solution for the requirements. In this analysis of battery technology trends, solid electrolytes, including polymer (organic), inorganic (oxides and sulfides), and their hybrid (composite) are focused to describe the electrochemical performance achievable by adopting optimal components and discussing the interfacial behaviors that occurred by the contact of different ingredients for safe and high-energy lithium secondary battery systems. As next-generation rechargeable lithium batteries, Li-S and Li-O2 battery systems are briefly discussed coupling with the possible use of solid electrolytes. In addition, Electronics and Telecommunications Research Institutes achievements in the field of solid electrolytes for lithium rechargeable batteries are finally introduced.

Technology Trends in Post-Lithium Secondary Batteries (포스트 리튬 이차전지 기술 동향)

  • Y.H. Choi;H.S. Chung
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.128-136
    • /
    • 2023
  • Lithium accounts for only 0.0017% of the earth crust, and it is produced in geographically limited regions such as South America, the United States, and China. Since the first half of 2017, the price of lithium has been continuously increasing, and with the rapid adoption of electric vehicles, lithium resources are expected to be depleted in the near future. In addition, economic blocs worldwide face intensifying scenarios such as competition for technological supremacy and protectionism of domestic industries. Consequently, Korea is deepening its dependence on China for core materials and is vulnerable to the influence of the United States Inflation Reduction Act. We analyze post-lithium secondary battery technologies that rely on more earth-abundant elements to replace lithium, whose production is limited to specific regions. Specifically, we focus on the technological status and issues of sodium-ion, zinc-air, and redox-flow batteries. In addition, research trends in post-lithium secondary batteries are examined. Post-lithium secondary batteries seem promising for large-capacity energy storage systems while reducing the costs of raw materials compared with existing lithium-based technologies.

Recent Trend of Lithium Secondary Batteries for Cellular Phones (최근 휴대폰용 배터리의 기술개발 동향)

  • Lee, H.G.;Kim, Y.J.;Cho, W.I.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.31-35
    • /
    • 2007
  • In this review article, we are going to explain the recent development of lithium secondary batteries for a cellular phone. There are three kinds of rechargeable batteries for cellular phones such as nickel-cadmium, nickel-metal hydride, and lithium ion or lithium ion polymer. The lithium secondary battery is one of the most excellent battery in the point of view of energy density. It means very small and light one among same capacity batteries is the lithium secondary battery. The market volume of lithium secondary batteries increases steeply about 15% annually. The trend of R&D is focused on novel cathode materials including $LiFePO_4$, novel anode materials such as lithium titanate, silicon, and tin, elecrolytes, and safety insurance.

The performance and quality improvement of Lithium ion Batteries

  • Xiaoping Li
    • 한국전기화학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.75-108
    • /
    • 2004
  • The market, development and trend of Lithium ion Batteries in China are introduce briefly. Early, Chinese manufactories were busy to expand and many new battery factories have been built up. Now, the relatively large companies pay more attentions on comprehensive quality improvement, therefore the production processing and facilities have been also modified in some extent. The recent technology progresses focus on High capacity (energy density), High rate, High average voltage, High safety, High temperature properties, Long cycle life, Low temperature properties, Low self discharge, Low cost, Super-large, Super-small, Super-thin, Consistency, Customization, and Environment friendly processing, simply $H_5L_4S_3C_2E_1$. Lithium ion polymer batteries which all batteries packaged with soft lamination film are named as in China have a quick growth and emphasized here because of their advantages ins $H_5L_4S_3C_2E_1$ for which it is quite difficult to be realized at the same time. Some of research works such as listed above are introduced. The other contends related to application trend of Lithium ion batteries and projects carrying out are also included.

  • PDF

Exploring the Properties and Potential of Single-crystal NCM 811 for Lithium-ion Batteries

  • Yongseok Lee;Seunghoon Nam
    • Corrosion Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.36-43
    • /
    • 2023
  • Single-crystal Ni-rich NCM is a material that has drawn attention in the field of lithium-ion batteries due to its high energy density and long cycle life. In this study, we investigated the properties of single-crystal NCM 811 and its potential for use in lithium-ion batteries. High-quality single crystals of NCM 811 were successfully synthesized by crystal growth via a flux method. The single-crystal nature of the samples was confirmed through detailed characterization techniques, such as scanning electron microscopy and x-ray diffraction with Rietveld refinement. The crystal structure and electrochemical performances of the single-crystal NCM 811 were analyzed and compared to its poly-crystal counterpart. The results indicated that single-crystal NCM 811 had electrochemical performance and thermal stability superior to poly-crystalline NCM 811, making it a suitable candidate for high-performance batteries. The findings of this study contribute to a better understanding of the characteristics and potential of single-crystal NCM 811 for lithium-ion batteries.