• 제목/요약/키워드: lithium

검색결과 2,854건 처리시간 0.023초

리튬용액침투법에 의한 내열충격성이 향상된 세라믹 제조 (Fabrication of Porcelains Having Improved Thermal Shock Resistance by a Lithium Solution Infiltration Method)

  • 나상문;이상진
    • 한국세라믹학회지
    • /
    • 제50권2호
    • /
    • pp.127-133
    • /
    • 2013
  • Porcelain with high thermal shock resistance was successfully fabricated by a lithium solution infiltration method with a lithium hydroxide solution. Lithium hydroxide solutions having various lithium concentrations were infiltrated into pre-sintered porcelain bodies. The porcelain sample infiltrated by the 9 wt% lithium solution and heat treated at $1250^{\circ}C$ for 1 h showed a low thermal expansion coefficient of $1.0{\times}10^{-6}/^{\circ}C$ with excellent thermal shock resistance. The highly thermally resistant porcelain had a well-developed ${\beta}$-spodumene phase with the general phases observed in porcelain. Furthermore, the porcelain showed a denser structure of $2.41g/cm^3$ sintering density and excellent whiteness in comparison with commercial thermally resistible porcelains. The lithium hydroxide in the samples readily reacted with moisture, and liquid phase reactants were formed during the fabrication process. In the case of an excess amount of lithium in the sample body, the lithium reactants were forced to the surface and re-crystallized at the surface, leaving large pores beneath the surface. These phenomena resulted in an irregular structure in the surface area and led to cracking in samples subjected to a thermal shock test.

리튬배터리와 관련된 차량화재 사례 및 원인조사 기법 분석 (Analysis of Car Fire Cases Related to a Lithium Battery and Cause Investigation Technique)

  • 이의평
    • 한국화재소방학회논문지
    • /
    • 제33권2호
    • /
    • pp.98-106
    • /
    • 2019
  • 차량의 내비게이션과 블랙박스의 보조배터리로 리튬배터리가 사용되고 있어 리튬배터리와 관련된 차량화재가 발생하고 있다. 발화개소 내에 리튬배터리가 있을 때, 리튬배터리에서 발화된 것인지 화재로 인해 리튬배터리가 피해를 입은 것인지를 판별하는 화재조사 기법이 정립되어 있지 않다. 이 논문에서는 리튬배터리와 관련된 차량화재 사례들을 소개하고, 리튬배터리의 화재발생 원인을 분석하며, 리튬배터리에서 발화된 것인지 외부에서 발화된 후 리튬배터리가 화재로 인한 피해를 입은 것인지를 객관적으로 판별할 수 있는 화재조사기법을 제안하고 있다.

프로베네시드와 탄산리튬의 약물상호작용 (Drug Interaction of Probenecid and Lithium Carbonate)

  • 이진환;이종기
    • Journal of Pharmaceutical Investigation
    • /
    • 제17권2호
    • /
    • pp.95-98
    • /
    • 1987
  • The drug interaction between probenecid and lithium carbonate was studied pharmacokinetically in rabbits. The blood level and the area under the concentration curve (AUC) of lithium carbonate administered orally were elevated by coadministration of probenecid. Probenecid inhibited the urinary excretion of lithium carbonate in rabbits. Biological half-life and $t_{max}$ of lithium carbonate were prolonged by coadministration of probenecid. From these results, dosage regimen of lithium carbonate is considered to be adjusted for effective and safe therapy in the coadministration of probenecid.

  • PDF

Neuroprotective Effects of Lithium on NMDA-induced Excitotoxicity in Mouse Cerebrum

  • Kwon, Gee-Youn;Kim, Soo-Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권3호
    • /
    • pp.111-121
    • /
    • 2006
  • Neuroprotective properties of lithium were evaluated by using in vivo NMDA excitotoxicity model. Systemic injection of NMDA to young mice induced neuronal apoptosis mediated by both TNFR-l and Fas ligand, and long-term lithium treatment showed noticeable neuroprotection against NMDA-induced excitotoxicity: NMDA-damaged neurons expressed several apoptosis-related gene products such as TNFR-l, Fas ligand, and caspase-3, and these gene expressions were not found in the brain of mice chronically treated with lithium. Therefore, it is highly likely that the protection offered by chronic lithium treatment occurred at far upstream of caspase activation, since the chronic lithium treatment increased the expression of Bcl-2, an important antiapoptotic gene known to act upstream of caspase cascade. Timm's histochemistry indicated the complete blockade of the NMDA insults by the treatment. There was no indication of axonal regeneration, which follows synaptic degeneration induced by neuronal damage. Furthermore, this study reports for the first time that TNFR-l and Fas ligand are involved in neuroprotective effects of lithium in NMDA-induced neuronal apoptosis.

Technology Developments for Recycling of Lithium Battery Wastes

  • Sohn, Jeong-Soo;Lee, Churl-Kyung
    • 자원리싸이클링
    • /
    • 제12권1호
    • /
    • pp.65-74
    • /
    • 2003
  • As new functional electronics are being developed fast, the commercialization rate of advanced battery as a power source proceeds rapidly. Lithium battery is satisfying the needs of high-energy source for its lightness and good electrochemical property. Especially lithium ion battery, adopted as a new power source for portable electronic equipments around the globe, has been mass-produced. Under the circumstance, the generation of lithium battery wastes is becoming a new environmental problem. In this paper, we are going to inspect technology developments for recycling of lithium battery wastes and scraps in domestic and foreign area, and to suggest how to treat domestic lithium battery wastes and scraps better.

Effective Approaches to Preventing Dendrite Growth in Lithium Metal Anodes: A Review

  • Jaeyun Ha;Jinhee Lee;Yong-Tae Kim;Jinsub Choi
    • 공업화학
    • /
    • 제34권4호
    • /
    • pp.365-382
    • /
    • 2023
  • A lithium metal anode with high energy density has the potential to revolutionize the field of energy storage systems (ESS) and electric vehicles (EVs) that utilize rechargeable lithium-based batteries. However, the formation of lithium dendrites during cycling reduces the performance of the battery while posing a significant safety risk. In this review, we discuss various strategies for achieving dendrite-free lithium metal anodes, including electrode surface modification, the use of electrolyte additives, and the implementation of protective layers. We analyze the advantages and limitations of each strategy, and provide a critical evaluation of the current state of the art. We also highlight the challenges and opportunities for further research and development in this field. This review aims to provide a comprehensive overview of the different approaches to achieving dendrite-free lithium metal anodes, and to guide future research toward the development of safer and more efficient lithium metal anodes.

Exposure Assessment Study on Lithium-Ion Battery Fire in Explosion Test Room in Battery Testing Facility

  • Mi Sung Jo;Hoi Pin Kim;Boo Wook Kim;Richard C. Pleus;Elaine M. Faustman;Il Je Yu
    • Safety and Health at Work
    • /
    • 제15권1호
    • /
    • pp.114-117
    • /
    • 2024
  • A lithium-ion battery is a rechargeable battery that uses the reversible reduction of lithium ions to store energy and is the predominant battery type in many industrial and consumer electronics. The lithium-ion batteries are essential to ensure they operate safely. We conducted an exposure assessment five days after a fire in a battery-testing facility. We assessed some of the potentially hazardous materials after a lithium-ion battery fire.We sampled total suspended particles, hydrogen fluoride, and lithium with real-time monitoring of particulate matter (PM) 1, 2.5, and 10 micrometers (㎛). The area sampling results indicated that primary potential hazardous materials such as dust, hydrogen fluoride, and lithium were below the recommended limits suggested by the Korean Ministry of Labor and the American Conference of Governmental Industrial Hygienists Threshold Limit Values. Based on our assessment, workers were allowed to return to work.

Equilibrium and kinetic studies of an electro-assisted lithium recovery system using lithium manganese oxide adsorbent material

  • Lee, Dong-Hee;Ryu, Taegong;Shin, Junho;Kim, Young Ho
    • Carbon letters
    • /
    • 제28권
    • /
    • pp.87-95
    • /
    • 2018
  • This study examined the influence of operating parameters on the electrosorptive recovery system of lithium ions from aqueous solutions using a spinel-type lithium manganese oxide adsorbent electrode and investigated the electrosorption kinetics and isotherms. The results revealed that the electrosorption data of lithium ions from the lithium containing aqueous solution were well-fitted to the Langmuir isotherm at electrical potentials lower than -0.4 V and to the Freundlich isotherm at electrical potentials higher than -0.4 V. This result may due to the formation of a thicker electrical double layer on the surface of the electrode at higher electrical potentials. The results showed that the electrosorption reached equilibrium within 200 min under an electrical potential of -1.0 V, and the pseudo-second-order kinetic model was correlated with the experimental data. Moreover, the adsorption of lithium ions was dependent on pH and temperature, and the results indicate that higher pH values and lower temperatures are more suitable for the electrosorptive adsorption of lithium ions from aqueous solutions. Thermodynamic results showed that the calculated activation energy of $22.61kJ\;mol^{-1}$ during the electrosorption of lithium ions onto the adsorbent electrode was primarily controlled by a physical adsorption process. The recovery of adsorbed lithium ions from the adsorbent electrode reached the desorption equilibrium within 200 min under reverse electrical potential of 3.5 V.

저급 탄산리튬의 재결정화를 통한 고순도 탄산리튬 제조에 대한 연구 (A study on the fabrication of high purity lithium carbonate by recrystallization of low grade lithium carbonate)

  • 김보람;김대원;황성옥;정수훈;양대훈
    • 한국결정성장학회지
    • /
    • 제31권1호
    • /
    • pp.16-23
    • /
    • 2021
  • 리튬이차전지 제조 공정 중 발생한 폐액으로부터 회수된 탄산리튬의 경우, 이차전지 양극재의 원료인 코발트, 니켈 및 망간의 중금속이 함유되어 있다. 본 연구에서는 탄산리튬의 재결정화를 통하여 순도 98.28 %의 저급 탄산리튬 분말에 함유된 중금속을 제거하고 탄산리튬의 순도를 높이고자 하였다. 먼저 염산 수용액을 이용하여 탄산리튬의 침출 효율을 살펴보았으며, pH 5 조건으로 침출 후 탄산나트륨의 당량 및 농도의 탄산리튬 재결정에 대한 영향을 확인하였다. 리튬의 함량 기준 대비 탄산나트륨 1 당량에서 1.5로 증가할수록, 농도 1.4 M에서 2.8 M로 증가할수록 회수율은 향상되었으며, 탄산나트륨의 투입 조건이 달라짐에 따라 결정 형상이 달라지는 것을 SEM 분석을 통해 확인할 수 있었다. 재결정된 탄산리튬 분말은 수세하여 순도 99.9 % 이상의 고순도 탄산리튬을 회수할 수 있었다.