• Title/Summary/Keyword: liquid storage tank

Search Result 210, Processing Time 0.028 seconds

Solar Energy Storage Effectiveness on Double Layered Single Span Plastic Greenhouse (2중 단동비닐하우스의 태양열 축열이용 효과)

  • Lee, Sung-Hyoun;Ryou, Young-Sun;Moon, Jong-Pil;Yun, Nam-Kyu;Kwon, Jin-Kyung;Lee, Su-Jang;Kim, Kyeong-Won
    • Journal of Biosystems Engineering
    • /
    • v.36 no.3
    • /
    • pp.217-222
    • /
    • 2011
  • This study was carried out in order to reduce the amount of underground water which is used in the double layered single span plastic greenhouse for retaining heat. For this research, two plastic green houses of the double layered single span plastic greenhouse were installed. There was equipped of internal small tunnel for keeping warm air in the interior of the house. Then the internal small tunnel for keeping warm air was fitted with PVC duct of 50 cm in diameter filled with subsurface water. The surplus solar energy in the greenhouse was stored in the water in the PVC duct. Four FCUs (Fan Coil Unit), which has the capacity of 8,000 kcal per hour, were installed in the middle of the house, and a circulation motor in heat storage water tank was operated from 10:30 a.m. to 16:00 p.m. in order to circulate water between the water tank and the FCUs. Consequently about 5 degrees celsius could be maintained in the interior of the internal small tunnel for keeping warm air with the external temperature of lower than minus 5 degrees celsius. It appeared that the alteration of an internal temperature of the house was flexible depending on the sunlight during daytime. To prevent the water freezing, mixing antifreezing liquid in the water or operating FCU continuously was needed. Also, in order to use the surplus solar thermal energy on plastic green house of water curtain system efficiently, storing the surplus heat during daytime simultaneously finding a method of using water curtain systematic underground water happened to be important. As a result of this research, when the house's interior temperature is below zero the operation of FCU appeared to be impossible. Considering the amount of water used in the house with water-curtain-heating system is 150~200 ton per day, using the system mentioned in this research showed that reducing the underground water more than 80% in order to maintain the internal temperature as the level of 5 degree celsius at the extreme temperature of minus 5 degrees celsius.

Effects of Ozone Treatment to Pig Liquid Manure on Reduction of Odorous Gases (돈분뇨 액비의 악취저감을 위한 오존처리 효과)

  • Jeong, J.W.;Yoo, Y.H.;Park, K.H.;Kam, D.H.;Choi, H.J.;Kim, T.I.;Cho, Y.S.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.3
    • /
    • pp.161-170
    • /
    • 2007
  • Ozone from a pilot-scale ozone generator was treated on fermented pig liquid manure stored in a storage tank in order to reduce odor substances during the process of fermented liquid manure production. The group of ozone treatment showed one less than the organic matter compared that of the control. The preferable condition for characteristic changes was when the ratio of BOD to COD was less than 1.5. Ozone treatment showed better oxidizing power than control as it removed more suspended solids and had less methyl isobutyl ketone(P<0.05). Odor reduction measured by olfactory method was higher in ozone treatment than in control.

  • PDF

A Study on the Decontamination of Cs-137 and Sr-90 Contained in the Liquid Radioactive Waste Discharged from the Spent Fuel Storage Tank Using Microalgae (미세조류를 이용한 사용후핵연료 저장조에서 배출되는 방사성 폐액에 함유된 Cs-137 및 Sr-90 제염에 관한 연구)

  • Kim, Tae Young;Park, Hye Min;Song, Yang Soo;Lee, Un Jang
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.20-25
    • /
    • 2022
  • In this study, the applicability of microalgae was evaluated for eco-friendly decontamination of cesium-137 (Cs-137) and strontium-90 (Sr-90), which are radioactive nuclides contained in radioactive waste. The monolithic radioactive solution used in the experiment was manufactured at a concentration of 1.5 Bq/mL Cs-137 and 1.0 Bq/mL Sr-90 by diluting a standard radioactive solution and distilled water. This experiment used two types of microalgae, Chlorella Vulgaris was used for Sr-90 decontamination and Hematococcus pluvialis for Cs-137 decontamination. The experimental method is to put the microalgae cultured for 2 weeks into a bottle with a semi-permeable membrane, and then put the bottle in which the microalgae was put into the manufactured radioactive solution, so that the microalgae and the radioactive solution react through the semi-permeable membrane for 48 hours. For the radioactivity concentration analysis of each sample, a gamma-ray nuclide analyzer was used for Cs-137, a γ-ray isotope, and a Liquid Scintillation Count(LSC) was used f or Sr-90, a β-ray isotope. As a result of the experiment, it was confirmed that about 88.0 % of Cs-137 and about 89.7 % of Sr-90 could be decontaminated, and about 98.6 % of Sr-90 was finally able to be decontaminated by the two-stage decontamination method.

A Study on Reliability Analysis and Quantitative Risk Analysis for Liquefied Petroleum Gas Station (LPG 충전시설에 대한 신뢰도 분석과 정량적 위험성 분석에 관한 연구)

  • Kim In-Won;Jin Sang-Hwa;Kim Tea-Woo;Kim In-Tae;Yeo Yeong-Koo
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.4 s.16
    • /
    • pp.40-48
    • /
    • 2001
  • For a Liquified Petroleum Gas(LPG) station, the reliability analysis, such as Fussell-Vesely importance, risk decrease factor and risk increase factor, was carried out and the risk ranks of events were determined. In order to confirm the degree of the risks identified in the reliability analysis, the quantitative risk analysis was done for the equipments which had the large values of risk ranks. As a result of the importance analysis for the LPG station, the external event was identified as the most riskful event. The defect of construction structure and the pipe corrosion were riskful as well. The result of quantitative risk analysis showed that the length of 46.3 meters were estimated to damage the process equipments by the thermal flux from the catastrophic rupture of storage tank in Boiling Liquid Expanding Vapor Explosion.

  • PDF

A Modified Cryopreservation Method of Psychrophilic Chlorophyta Pyramimonas sp. from Antarctica

  • Hong, Sung-Soo;Lee, Soo-Young;Kim, Young-Nam;Kang, Sung-Ho;Kim, Hak-Jun
    • Ocean and Polar Research
    • /
    • v.33 no.3
    • /
    • pp.303-308
    • /
    • 2011
  • Polar psychrophiles which thrive under extreme conditions such as cold temperature, high salinity, and high dose ultraviolet light, emerge as novel targets for biotechnology. To prevent genetic drift and the possibility of contamination by subculturing, cryopreservation was employed for two psychrophilic microalgae, Porosira sp. (KOPRI AnM0008) and Pyramimonas sp. (KOPRI AnM0046), which have anti-freeze activities. Five cryoprotectants (dimethyl sulphoxide, ethylene glycol, glycerol, methanol and propylene glycol) showed toxicity at 20-30% (v/v). The optimal cryoprotectant concentration and equilibration time were less than 20% and 10 min, respectively. Cryopreservation was carried out in the presence of cryoprotectants either by direct freezing in liquid nitrogen ($LN_2$) or controlled freezing using a controlled rate freezer followed by storage in the $LN_2$ tank. As a result, Pyramimonas sp. (KOPRI AnM0046), a psychrophilic chlorophyta was revived. Cryopreserved Porosira sp. was not revived from either freezing protocols probably due to the silicic cell wall and its relatively large cell size. In the case of Pyramimonas sp. (KOPRI AnM0046), the controlled freezing method showed higher revival yield than the direct freezing method.

Investigation of ground condition charges due to cryogenic conditions in an underground LNG storage plant (지하 LNG 저장 시험장에서 극저온 환경에 의한 지반상태 변화의 규명)

  • Yi Myeong-Jong;Kim Jung-Ho;Park Sam-Gyu;Son Jeong-Sul
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.67-72
    • /
    • 2005
  • To investigate the feasibility of a new concept of storing Liquefied Natural Gas (LNG) in a lined hard rock cavern, and to develop essential technologies for constructing underground LNG storage facilities, a small pilot plant storing liquid nitrogen (LN2) has been constructed at the Korea Institute of Geoscience and Mineral Resources (KIGAM). The LN2 stored in the cavern will subject the host rock around the cavern to very low temperatures, which is expected to cause the development of an ice ring and the change of ground condition around the storage cavern. To investigate and monitor changes in ground conditions at this pilot plant site, geophysical, hydrogeological, and rock mechanical investigations were carried out. In particular, geophysical methods including borehole radar and three-dimensional (3D) resistivity surveys were used to identify and monitor the development of an ice ring, and other possible changes in ground conditions resulting from the very low temperature of LN2 in the storage tank. We acquired 3D resistivity data before and after storing the LN2, and the results were compared. From the 3D images obtained during the three phases of the resistivity monitoring survey, we delineated zones of distinct resistivity changes that are closely related to the storage of LN2. In these results, we observed a decrease in resistivity at the eastern part of the storage cavern. Comparing the hydrogeological data and Joint patterns around the storage cavern, we interpret this change in resistivity to result from changes in the groundwater flow pattern. Freezing of the host rock by the very low temperature of LN2 causes a drastic change in the hydrogeological conditions and groundwater flow patterns in this pilot plant.

Numerical Investigation of Urea Freezing and Melting Characteristics Using Coolant Heater (냉각수 순환 가열 방식을 이용한 요소수의 동결 및 해동 특성에 관한 수치적 연구)

  • Lee, Seung Yeop;Kim, Nam Il;Park, Yun Beom;Kim, Man Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.717-724
    • /
    • 2013
  • Urea-SCR technology is known as one of the powerful NOx reduction systems for vehicles as well as stationary applications. For its consistent and reliable operation in vehicle applications, however, the freezing and melting of the urea solution in cold environments have to be resolved. In this study, therefore, a numerical study of three-dimensional unsteady problems was analyzed to understand the urea freezing and heating phenomena and heat transfer characteristics in terms of urea liquid volume fraction, temperature profiles, and phase change behavior in urea solutions with time by using the commercial software Fluent 6.3. As a result, it was found that the freezing phenomenon proceeds with a phase change from the tank wall to the center, whereas the melting phenomenon occurs faster in the upper part of the storage tank by natural convection and in the adjacent part of the coolant pipe than in other parts. Furthermore, approximately 190 s were required to obtain 1L of urea solution using a 4-coiled coolant heater under conditions of $70^{\circ}C$ and 200 L/h.

Viability of Endothelial Cells in Preserved Human Saphenous Vein Allografts (보존된 사람 동종 복재정맥 이식편혈관 내피세포의 생활성에 관한 연구)

  • 지현근;김용진
    • Journal of Chest Surgery
    • /
    • v.36 no.4
    • /
    • pp.229-241
    • /
    • 2003
  • Background:Autogenous vein is the preferred vascular graft for patients who require coronary artery bypass surgery or peripheral arterial bypass surgery. When an autogenous vein is not available, an allograft saphenous vein can be used as an alternative conduit. Although arterial homograft has been under investigation since the beginning of this century, the viability of endothelial cells and the optimum mode of storage for the venous and arterial allografts is controversial. In addition, with the recently gained knowledge of vascular endothelial functions, such as the production of nitric oxide or thrombomodulin, the viability and antigenicity of endothelial cells are being studied again. The purpose of this study was to evaluate the viability of endothelial cells in the preserved human saphenous veins. Material and Method: The veins were stored in a $4^{\circ}C$ RPMI (Roswell Park Memorial Institute) 1640 solution including 10% fetal calf serum, for one, three, five, seven or fourteen days. After the completion of the storage period, the veins were divided into two groups: Group I: studied immediately at $4^{\circ}C$ (cold) storage (I-1, I-3, I-5, I-7, I-14), and Group II: studied after storage at $-196^{\circ}C$ liquid nitrogen tank (cryopreservation) in an RPMI 1640 solution containing 10% DMSO for two weeks (II-1, II-3, II-5, II-7, II-14). Light microscopy and scanning electron microscopy (SEM), frypan blue exclusion testing, and thrombomodulin immunohistochemistry were performed. Result: In a morphometric study using SEM, there was statistically significant increase in Gundry Score in Groups I-7, I-14, II-5, II-7, and II-14 and showed cellular destruction (p<0.05). In the thrombomodulin immunohistochemistry study, there was reactivity in Groups I-1, I-3, and I-5, but the cryopreserved group revealed decreased reactivity (p<0.05). The trypan blue exclusion testing also showed superior viability in cold storage Group I. Conclusion: Venous allografts preserved in a $4^{\circ}C$ RPMI 1640 solution showed well preserved endothelial cellular integrity and thrombomodulin expression at up to seven days of preservation. Although cryopreservation of venous allografts stored in 10% DMSO -RPMI 1640 solution maintained the endothelial cellular structure on SEM, immunohistochemistry from the thrombomodulin and trypan blue exclusion testing showed decreased viability, It remains to be seen whether the decreased thrombomodulin reactivity could be restored, and what the nature to the relationship is between thrombomodulin and long-term patency of allografts.

Analysis of Solar Energy Storage Using Effectiveness on Single Span Plastic Greenhouse with Water Curtain System (수막재배 단동비닐하우스의 태양열 축열이용 효과분석)

  • Lee, S.H.;Ryou, Y.S.;Moon, J.P.;Yun, N.K.;Lee, S.J.;Kim, K.W.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.200.2-200.2
    • /
    • 2010
  • This study was carried out in order to reduce the amount of underground water which is used in the water curtain system for retaining heat. To proceed to the research, two plastic green houses of water curtain system were installed. One was equipped of internal small tunnel for keeping warm air in the interior of the house. Then the internal small tunnel for keeping warm air was fitted with PVC duct of 50cm in diameter filled with subsurface water. Storing surplus solar energy in the water filled in PVC duct was the method used to this house. Another was installed with FCU in the middle of the house, and was fitted a circulation motor in water tank for heat storage which was operated from 10 a.m. to 4 p.m. in order to interchange heat with FCU. The latter was installed with four FCUs which has a capacity of 8000kcal per hour. Consequently about 5 degrees celsius could be maintained in the interior of the internal small tunnel for keeping warm air with the external temperature of more than minus 5 degrees celsius. It appeared that the alteration of an internal temperature of the house was flexible depending on the sunlight during daytime. It happened that to prevent the water from freezing, mixing antifreezing liquid in the flowing water of FCU or changing the operating method of FCU was a suitable measure. Also, in order to use the surplus solar thermal energy on plastic green house of water curtain system efficiently, storing the surplus heat during daytime simultaneously finding a method of using water curtain systematic underground water happened to be important. As a result of this research, when the house's interior temperature is below zero the operation of FCU appeared to be impossible. Therefore when supposed that the amount of water used in the house is 150~200ton for stable operation of FCU, using the system mentioned in the above research happened to be appropriate of reducing the amount of subsurface water from 80% to 100% when maintaining the interior of internal small tunnel's temperature for keeping warm air of 5 degrees celsius at the extreme temperature of minus 5 degrees celsius.

  • PDF

Experimental Investigation of the Combined Effects of Heat Exchanger Geometries on Nucleate Pool Boiling Heat Transfer in a Scaled IRWST (열교환기 형상이 축소한 IRWST 내부의 풀핵비등에 미치는 복합적인 영향에 대한 실험적 연구)

  • Kang, Myeong-Gie;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.1-16
    • /
    • 1996
  • In an effort to determine the combined effects of major parameters of heat exchanger tubes on the nucleate pool boiling heat transfer in the scaled in-containment refueling water storage tank (IRWST), a total of 1,966 data for q'quot; versus ${\Delta}T$ has been obtained using various combinations of tube diameters, surface roughness, and tube orientations. The experimental results show that (1) increased surface roughness enhances heat transfer for both horizontal and vertical tubes, (2) the two heat transfer mechanisms, i.e.,enhanced heat transfer for both horizontal and vertical tubes, (2) the two heat transfer mechanisms, i.e., enhanced heat transfer due to liquid agitation by bubbles generated and reduced heat transfer by the formation of large vapor slugs and bubble coalescence are different in two regions of low heat fluxes (q'quot; $\leq$50kW/$m^2)$ and high heat fluxes (q'quot; $\geq$50kW/$m^2)$ depending on the orientation of tubes and the degree of surface roughness, and (3) the heat transfer rate decreases as the tube diameter is increased for both horizontal and vertical tubes, but the effect of tube diameter on the nucleate pool boiling heat transfer for vertical tubes is greater than that for horizontal tubes. Two empirical heat transfer correlations for q'quot;, one for horizontal tubes and the other for vertical tubes, are obtained in terms of surface roughness $({\varepsilon})$ and tube diameter (D). In addition, a simple empirical correlation for nucleate pool boiling heat transfer coefficient $(h_b)$ is obtained as a function of heat flux (q'quot;) only.ucleate pool boiling heat transfer coefficient $(h_b)$ is obtained as a function of heat flux (q'quot;) only.

  • PDF