DOI QR코드

DOI QR Code

N-terminal amino acid sequence analysis of major manganese peroxidase (MnP3) produced by static culture of Pleurotus ostreatus

느타리 버섯균의 정치배양으로부터 생산되는 중요한 망간퍼옥시데이즈(MnP3)의 N-말단 아미노산 배열 분석

  • Ha, Hyo-Cheol (Department of bio-technology and convergence, Daegu Haany University)
  • 하효철 (대구한의대학교 바이오산업융합학부)
  • Received : 2019.08.28
  • Accepted : 2019.10.16
  • Published : 2019.12.31

Abstract

Pleurotus ostreatus No.42, known as the ligninolytic basidiomycetes, showed production of MnP and Lac, but did not show any LiP acitivity in static culture, grown in GPYW liquid medium. Maximum production of MnP (80U/flask) was observed on day 11 of culturing in this medium. Chromatographic purification of MnP included the use of Sepharose CL-6B and Mono-Q. The major MnP isozyme purified by column chromatography was observed to be a 36.4 KDa (single band on SDS PAGE). The 19-amino acid sequence from the N-terminal was determined by protein sequencing to be ATCADGRTTANAACCVLFP. The N-terminal sequence of the major MnP isozyme of P. ostreatus No.42 was found to be the same as a previously reported sequence of an MnP3 isozyme from this fungus.

리그닌 분해 담자균류로 알려져 있는 느타리버섯균 No.42는 망간퍼옥시데이즈(MnP) 및 락게이즈(Lac)를 생산하였으나 글루코오스-펩톤-이스트-밀기울(GPYW)배지를 이용한 정치배양조건하에서 리그닌퍼옥시데이즈(LiP)활성은 검출되지 않았다. 한편, 동일배지에서 망간퍼옥시데이즈 활성은 11일째 80(3.6) U/flask(ml)의 최대 생산되었다. 망간퍼옥시데이즈 분리정제는 Sepha-ros CL-6B 및 Mono-Q 컬럼순으로 수행하였으며 주요 망간퍼옥시데이즈 isozyme은 단일밴드로 분자량은 36.4KDa이였다. N-말단으로부터 19개의 아미노산 배열은 단백질 자동 분석 장치로 분석한 결과 ATCADGRTTANAACCVLFP를 나타내었다. 느타리버섯균 No.42의 정치배양조건 하에서 세포외로 생산되는 중요한 망간퍼옥시데이즈 isozyme의 N-말단 아미노산 배열은 이전에 보고된 MnP3의 아미노산 배열과 동일하였다.

Keywords

References

  1. Asada Y, Watanabe A, Irie T, Nakamura Y, Kuwahara M. 1995. Structures of genomic and complementary DNAs coding for Pleurotus ostreatus manganese (II) peroxidase. Biochim Biophys Acta Prot Struct Mol Enzymol 1251: 205-209. https://doi.org/10.1016/0167-4838(95)00102-Z
  2. Beckham GT, Johnson CW, Karp EM, Salvachua D, Vardon DR. 2016. Opportunities and challenges in biological lignin valorization. Curr Opin Biotechnol 42: 40-53. https://doi.org/10.1016/j.copbio.2016.02.030
  3. Bradford MM. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Cohen R, Hadar Y, Yarden O. 2001. Transcript and activity levels of different Pleurotus ostreatus peroxidases are differentially affected by $Mn^{2+}$. Environ Microbiol 3: 312-322. https://doi.org/10.1046/j.1462-2920.2001.00197.x
  5. Cohen R, Yarden O, Hadar Y. 2002. Lignocellulose affects $Mn^{2+}$ regulation of peroxidase transcript levels in solid-state cultures of Pleurotus ostreatus. Appl Environ Microbiol 68: 3156-3158. https://doi.org/10.1128/AEM.68.6.3156-3158.2002
  6. Elisashvili V, Penninckx M, Kachlishvili E, Tsiklauri N, Metreveli E, Kharziani T, Kvesitadze G. 2008. Lentinus edodes and Pleurotus species lignocellulolytic enzymes activity in submerged and solid-state fermentation of lignocellulosic wastes of different composition. Bioresour Technol 99: 457-462. https://doi.org/10.1016/j.biortech.2007.01.011
  7. Fernandez-Fueyo E, Castanera R, Ruiz-Duenas FJ, Lopez-Lucendo M, Ramirez L, Pisabarro AG, Martinez AT. 2014. Ligninolytic peroxidase gene expression by Pleurotus ostreatus: Differential regulation in lignocellulose medium and effect of temperature and pH. Fungal Genet Biol 72: 150-161. https://doi.org/10.1016/j.fgb.2014.02.003
  8. Giardina P, Palmieri G, Fontanella B, Rivieccio V, Sannia G. 2000. Manganese peroxidase isoenzymes produced by Pleurotus ostreatus grown on wood sawdust. Arch Biochem Biophys 376: 171-179. https://doi.org/10.1006/abbi.1999.1691
  9. Godfrey BJ, Mayfield MB, Brown JA, Gold MH. 1990. Characterization of a gene encoding a manganese peroxidase from Phanerochaete chrysosporium. Gene 93: 119-124. https://doi.org/10.1016/0378-1119(90)90144-G
  10. Gold MH, Alic M. 1993. Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Mol Biol Rev 57: 605-622.
  11. Ha HC, Honda Y, Watanabe T, Kuwahara M. 2001. Production of manganese peroxidase by pellet culture of the lignin-degrading basidiomycete, Pleurotus ostreatus. Appl Microbiol Biotechnol 55: 704-711. https://doi.org/10.1007/s002530100653
  12. Ha HC, Lee JS. 2004. Production and characterization of manganese peroxidase from the white rot fungus Pleurotus ostreatus in liquid culture. J Korean Soc Appl Biol Chem 47: 22-26.
  13. Ha HC. 2013. Production of ligninolytic enzymes by Pleurotus ostreatus No. 42 in various media. J Mushrooms 11: 87-91. https://doi.org/10.14480/JM.2013.11.2.087
  14. Hirano T, Honda Y, Watanabe T, Kuwahara M. 2000. Degradation of bisphenol A by the lignin-degrading enzyme, manganese peroxidase, produced by the white-rot basidiomycete, Pleurotus ostreatus. Biosci Biotechnol Biochem 64: 1958-1962. https://doi.org/10.1271/bbb.64.1958
  15. Hofrichter M, Vares T, Kalsi M, Galkin S, Scheibner K, Fritsche W, Hatakka A. 1999. Production of manganese peroxidase and organic acids and mineralization of 14C-labelled lignin (14C-DHP) during solid-state fermentation of wheat straw with the white rot fungus Nematoloma Frowardii. Appl Environ Microbiol 65: 1864-1870. https://doi.org/10.1128/AEM.65.5.1864-1870.1999
  16. Irie T, Honda Y, Ha HC, Watanabe T, Kuwahara M. 2000. Isolation of cDNA and genomic fragments encoding the major manganese peroxidase isoenzyme from the white rot basidiomycete Pleurotus ostreatus. J Wood Sci 46: 230-233. https://doi.org/10.1007/BF00776454
  17. Irie T, Honda Y, Watanabe T, Kuwahara M. 2001. Homologous expression of recombinant manganese peroxidase genes in ligninolytic fungus Pleurotus ostreatus. Appl Microbiol Biotechnol 55: 566-570. https://doi.org/10.1007/s002530000540
  18. Kamitsuji H, Honda Y, Watanabe T, Kuwahara M. 2004. Production and induction of manganese peroxidase isozymes in a white-rot fungus Pleurotus ostreatus. Appl Microbiol Biotechnol 65: 287-294. https://doi.org/10.1007/s00253-003-1543-9
  19. Kamitsuji H, Honda Y, Watanabe T, Kuwahara M. 2005. $Mn^{2+}$ is dispensable for the production of active MnP2 by Pleurotus ostreatus. Biochem Biophys Res Commun 327: 871-876. https://doi.org/10.1016/j.bbrc.2004.12.084
  20. Knop D, Yarden O, Hadar Y. 2015. The ligninolytic peroxidases in the genus Pleurotus: divergence in activities, expression, and potential applications. Appl Microbiol Biotechnol 99: 1025-1038. https://doi.org/10.1007/s00253-014-6256-8
  21. Kuwahara M, Glenn JK, Morgan MA, Gold MH. 1984. Separation and characterization of two extracellular $H_2O_2$-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169: 247-250. https://doi.org/10.1016/0014-5793(84)80327-0
  22. Martinez AT, Ruiz-Duenas FJ, Camarero S, Serrano A, Linde D, Lund H, Vind J, Tovborg M, et al. 2017. Oxidoreductases on their way to industrial biotransformations. Biotechnol Adv 35: 815-831. https://doi.org/10.1016/j.biotechadv.2017.06.003
  23. Martinez M, Ruiz-Duenas FJ, Guillen F, Martinez AT. 1996. Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. Eur J Biochem 237: 424-432. https://doi.org/10.1111/j.1432-1033.1996.0424k.x
  24. Mayfield MB, Godfrey BJ, Gold MH. 1994. Characterization of the mnp2 gene encoding manganese peroxidase isozyme 2 from the basidiomycete Phanerochaete chrysosporium. Gene 142: 231-235. https://doi.org/10.1016/0378-1119(94)90266-6
  25. Salame TM, Yarden O, Hadar Y. 2010. Pleurotus ostreatus manganese-dependent peroxidase silencing impairs decolourization of Orange II. Microb Biotechnol 3: 93-106. https://doi.org/10.1111/j.1751-7915.2009.00154.x
  26. Salame TM, Knop D, Levinson D, Yarden O, Hadar Y. 2013. Redundancy among manganese peroxidases in Pleurotus ostreatus. Appl Environ Microbiol 79: 2405-2415. https://doi.org/10.1128/AEM.03849-12
  27. Sarkar S, Martinez AT, Martinez MJ. 1997. Biochemical and molecular characterization of a manganese peroxidase isoenzyme from Pleurotus ostreatus. Biochem Biophys Acta Prot Struct Mol Enzymol 1339: 23-30. https://doi.org/10.1016/S0167-4838(96)00201-4
  28. Sato T, Irie T, Yoshino F. 2017. Heterologous expression of the Pleurotus ostreatus MnP3 gene by the laccase gene promoter in Lentinula edodes. Biosci Biotechnol Biochem 81: 1553-1556. https://doi.org/10.1080/09168451.2017.1332977
  29. Singh D, Chen S. 2008. The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes. Appl Microbiol Biotechnol 81: 399-417. https://doi.org/10.1007/s00253-008-1706-9
  30. Tsukihara T, Honda Y, Watanabe T, Kuwahara M. 2006. Molecular breeding of white rot fungus Pleurotus ostreatus by homologous expression of its versatile peroxidase MnP2. Appl Microbiol Biotechnol 71: 114-120. https://doi.org/10.1007/s00253-005-0136-1
  31. Wang X, Yao B, Su X. 2018. Linking enzymatic oxidative degradation of lignin to organics detoxification. Int J Mol Sci 19: 3373-3389. https://doi.org/10.3390/ijms19113373
  32. Wariishi H, Dunford HB, Macdonald ID, Gold MH. 1989. Manganese peroxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Transient state kinetics and reaction mechanism. J Biol Chem 264: 3335-3340. https://doi.org/10.1016/S0021-9258(18)94070-6
  33. Watanabe T, Katayama S, Enoki M, Honda Y, Kuwahara M. 2000. Formation of acyl radical in lipid peroxidation of linoleic acid by manganese-dependent peroxidase from Cerioporipsis subvermispora and Bjerkandera adusta. Eur J Biochem 267: 4222-4231. https://doi.org/10.1046/j.1432-1033.2000.01469.x