• Title/Summary/Keyword: liquid segregation

Search Result 79, Processing Time 0.029 seconds

The Effect of the Gate Shape on the Microstructure of the Grain Size Controlled Material (게이트 형상이 결정립 제어 소재의 미세조직에 미치는 영향)

  • Jung Y.S.;Seo P. K.;Kang C. G.
    • Transactions of Materials Processing
    • /
    • v.14 no.1 s.73
    • /
    • pp.49-56
    • /
    • 2005
  • In the semi-solid die casting process, an important thing is the flow behavior of semi-solid materials. The flow patterns of the semi-solid material can make the defects during die filling. To control the flow patterns is very important and difficult. In this paper, the flow behavior of the semi-solid A356 alloy material during die filing at various die gate shapes has been observed with the grain size controlled material. The effect of the gate shape on the die filling characteristics was investigated. The filling tests in each plunger stroke were experimented, and also simulated on the semi-solid material die casting process by MAGMAsoft. According to the filling tests and computer simulation, the effect of the gate shape on liquid segregation has been investigated.

The Effect of the Gate Shape on the Controlled Material the Microstructure of Grain Size (게이트 형상이 결정입 제어 소재의 미세조직에 미치는 영향)

  • Jung Y. S.;Bae J. W.;Seo P. K.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.152-155
    • /
    • 2004
  • In the semi-solid die casting process, the important thing is the flow behaviors of semi-solid material. The flow patterns of semi-solid material can make the defects during die filling. To control of the flow patterns, is very important and difficult. In this paper, the flow behaviors of the semi-solid A356 alloy material during die filling at various die gate shapes has been observed with the grain size controlled material. The effects of the gate shape on the die filling characteristics were investigated. The filling tests in each plunger strokes were experimented, also simulated on the semi-solid material die casting process by MAGMAsofi. According to the filling tests and computer simulation, the effect of the gate shape on liquid segregation had been investigated.

  • PDF

Effect of Al-5Ti-B on the Microstructure of Rheology Material (Al-5Ti-B가 레오로지 소재의 미세조직에 미치는 영향)

  • Yang Z.;Seo P. K.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.299-302
    • /
    • 2005
  • Semisolid A356 slurries were prepared by electromagnetic stirring casting and by inoculation of Al-5Ti-B master alloy. As stirring time and addition of Al-5Ti-B are different, the grain size of the primary phase is different. Through the experiment of rheocast in a Buhler horizontal die casting machine, it was found that the finer the equiaxed primary dendrites, the smoother the die filling and better cast quality. Small equiaxed primary dendrite also results in less liquid segregation on the surface.

  • PDF

A Study on the Reduction of Segregation in Large 12%Cr Steel Ingot (12%Cr 대형강괴(大型鋼塊)의 편석경감(偏析輕減)에 관(關)한 연구(硏究))

  • Eun, Ok-Ki;Chang, Yun-Souk
    • Journal of Korea Foundry Society
    • /
    • v.10 no.6
    • /
    • pp.520-527
    • /
    • 1990
  • In order to reduce segregation in 12%Cr steel ingots of 60-100tons, numerical analysis by computer was applied to simulate solidification profiles and the profiles of liguid-solid coexisting zone in accordance with the ratios of H(Height) /D(diameter) of 100-ton ingot. The result is that the ratio of L(vertical length) /D(diameter) of liquid-solid coexisting zone was reduced in proportion to the decrease of H/D ratio. With the reduced H/D ratio(0.92) of ingot, the segregation in 60-ton ingot of 12% Cr steel can be much reduced and recovery was also improved by reducing ingot weight.

  • PDF

Effect of Temperature Gradient on the Defects of Nd;YAG Single Crystal Grown by Czochralski Method (융액인상법에 의한 Nd;YAG 단결정 성장시 온도구배의 변화에 따른 결함거동)

  • 김한태;배소익;이상호;정수진
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.10
    • /
    • pp.1015-1020
    • /
    • 1997
  • In the Nd;YAG crystal growth by Czochralski method, the relationship between the core formation and the solid-liquid interface was observed by controlling the temperature gradient in the furnace. When the crystal was grown along<111> direction, defects and core area were reduced as the temperature gradient increased. The optimum temperature gradient was found to be higher than 4$0^{\circ}C$/cm. The Nd3+ concentration analysis by ICP-Mass showed that the segregation coefficient was about 20% higher in the core region than core-free region, where the segregation coefficients of core region and core-free region were 0.22 and 0.18, respectively.

  • PDF

A Consideration on Segregation Process of Dopant at WC/Co and WC/WC Interfaces in VC Doped WC-Co Submicro-grained Hardmetal

  • Kawakami, Masaru;Terada, Osamu;Hayashi, Koji
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.334-335
    • /
    • 2006
  • WC/WC interface in VC mono-doped WC-10mass%Co submicro-grained hardmetals of $0.5\;{\mu}m$ was investigated together with WC/Co interface by using HRTEM and XMA. The thickness of V-rich layer and the analytical value of V at WC/WC interface were almost the same as those at WC/Co interfaces. These results, etc., suggested that the V-rich layers at both interfaces were not generated by an equilibrium segregation mechanism in the sintering stage, but generated by a preferential precipitation mechanism during the solidification of Co liquid phase in the cooling stage. Based on this suggestion, we succeeded in developing a nano-grained hardmetal with 100 nm $(0.1\;{\mu}m)$.

  • PDF

The Effect of Re addition and Solidification Rate on the Directional Solidification Behavior of Ni-Al Alloy (Ni-Al 합금의 일방향 응고 거동에 미치는 Re 및 응고속도의 영향)

  • Lee, Man-Gil;Yoo, Young-Soo;Jo, Chang-Yong;Lee, Je-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.27 no.6
    • /
    • pp.243-249
    • /
    • 2007
  • The effect of Re addition and solidification rate on the directional solidification behavior of Ni-Al model alloy has been investigated. Directional solidification (DS) were carried out using the modified Bridgman furnace with various solidification rates. The solid/liquid interface during directional solidification was preserved by quenching the specimen after the desired volume fraction of original liquid was solidified. The equilibrium partition coefficients of Al and Re Were estimated by measuring the compositions at the quenched solid/liquid interface. Then, the effect of Re addition on the elemental segregation behavior was carefully analyzed. The differential scanning calorimetry results showed that the Re addition results in increased ${\gamma}'$ solvus and freezing range of the alloy. It was also shown that the primary dendrite arm spacing gradually decreases with increasing the Re content, while the secondary dendrite arm spacing appears to be independent on the Re content. The compositional analyses clearly revealed that the segregation of Al increased with increasing the Re content and solidification rate, while that of Re was found to be independent on the solidification rate in the range of $10{\sim}100{\mu}m/s$ due to its sluggish diffusion rate in the Ni solid solution.

Dynamic Simulation of Solid Particle Considering Change by Viscosity in Rheology Material (반응고 재료에서 점성을 고려한 고상입자의 거동예측을 위한 수치모사 해석)

  • Kwon, K.Y.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.26-38
    • /
    • 2009
  • It was reported that the semi-solid forming process has many advantages over the conventional forming process, such as a long die life, good mechanical properties and energy savings. It is very important, however, to control liquid segregation to gain mechanical property improvement of materials. During forming process, rheology material has complex characteristics, thixotropic behavior. Also, difference of velocity between solid and liquid in the semi-solid state material makes a liquid segregation and specific stress variation. Therefore, it is difficult for a numerical simulation of the rheology process to be performed. General plastic or fluid dynamic analysis is not suitable for the behavior of rheology material. The behavior and stress of solid particle in the rheology material during forging process is affected by viscosity, temperature and solid fraction. In this study, compression experiments of aluminum alloy were performed under each other tool shape which is rectangle shape(square array), rectangle shape(hexagonal array), and free shape tool. In addition, the dynamics behavior compare with Okano equation to power law model which is viscosity equation.

Melting Heat Transfer of Liquid Ice in a Rectangular Vessel with Heated Top Wall (구형용기내 상부면가열에 의한 유동빙의 융해열전달)

  • 김명환;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.1
    • /
    • pp.36-44
    • /
    • 1995
  • Melting characteristics of unrestrained liquid ice in a rectangular vessel with heated top wall were investigated experimentally. The liquid ice, a mixture of ice particles and ethylene-glycol aqueous solution, was adopted as a testing material. During the melting process the liquid ice was drawn by buoyancy to the heated top wall of the rectangular vessel where close-contact melting occured. The melting behavior and melting rate of the liquid ice as well as local/mean heat-transfer coefficient at the heated top wall were observed and measured under a variety of conditions of heat flux and various initial concentration of the aqueous binary solution. It was found that the heat transfer of the heated top wall is remarkably promoted by the close-contact melting, and that the dendritic frozen layer at the lower interface of the liquid ice is formed. Photographic evidence demonstrated that plumes containing solute-rich liquid issued from isolated chimneys within the liquid ice layer where segregation of interstitial channel took place.

  • PDF

Development of inorganic thixotropic-grout for backfilling of shield TBM tail voids and its compatibility (쉴드 TBM 뒤채움용 무기계 가소성 그라우트의 개발 및 적합성 평가)

  • Kim, Dae-Hyun;Jung, Du-Hwoe;Jeong, Gyeong-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.3
    • /
    • pp.277-286
    • /
    • 2009
  • A suitability of a thixotropic grout developed in this study has been examined through laboratory tests on strength, segregation, and viscosity. The thixotropic grout is a mixture of two types of liquid components. The A-liquid component consists of cement, water, and MG-A and the B-liquid component consists of scarlet, water, and MG-B. Unconfined compressive strength of specimens prepared with a prefer mix-proportion satisfied a design criteria for the backfilling of tail voids. A material segregation phenomenon under water condition was not observed in the thixotropic grout whereas it was observed in the existing silica-type grout. In addition, viscosity tests have been rallied out on the thixotropic grout to verify the capability of a long-distance delivery in the field. Both the A-liquid component and the B-liquid component maintained a viscosity of below 2,000 cP for 120 minutes. This experimental result confirms that two liquid components guarantees a long-distance delivery in tile field application.