• 제목/요약/키워드: liquid phase sintering

검색결과 337건 처리시간 0.035초

$ZnWO_4$ 소결특성 및 고주파 유전특성 (Sintering and Microwave Dielectric Properties of $ZnWO_4$)

  • 이경호;김용철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.386-389
    • /
    • 2001
  • In this study, development of a new LTCC material using non-glassy system was attempted with respect to reducing the fabrication process steps and cost down. Lowering the sintering temperature can be achieved by liquid phase sintering. However, presence of liquid phases usually decrease dielectric properties, especially the quality factor. Therefore, the starting material must have quality factor as high as possible in microwave frequency range. And also, the material should have a low dielectric constant for enhancing the signal propagation speed. Regarding these factors, dielectric constants of various materials were estimated by the Clausius-Mosotti equation. Among them, ZnWO$_4$ was turned out the suitable LTCC material. ZnWO$_4$ can be sintered up to 98% of full density at 105$0^{\circ}C$ for 3 hours. It's measured dielectric constant, quality factor, and temperature coefficient of resonant frequency were 15.5, 74380GHz, and -70ppm/$^{\circ}C$, respectively In order to modify the dielectric properties and densification temperature, B$_2$O$_3$ and V$_2$O$_{5}$ were added to ZnWO$_4$. 40 mol% B$_2$O$_3$ addition reduced the dielectric constant from 15.5 to 12. And the temperature coefficient of resonant frequency was improved from -70 to -7.6ppm/$^{\circ}C$. However, sintering temperature did not change due to either lack of liquid phase or high viscosity of liquid phase. Incorporation of small amount of V$_2$O$_{5}$ in ZnWO$_4$-B$_2$O$_3$ system enhanced liquid phase sintering. 0.lwt% V$_2$O$_{5}$ addition to the 0.6ZnWO$_4$-0.4B$_2$O$_3$ system, reduced the sintering temperature down to 95$0^{\circ}C$ Dielectric constant, quality factor, and temperature coefficient of resonant frequency were 9.5, 16737GHz, and -21.6ppm/$^{\circ}C$ respectively.ively.

  • PDF

Fluoride 첨가에 따른 CaWO$_4$의 소결 및 고주파 유전특성 (Effects of Fluoride Additions on Sintering and Microwave Dielectric Properties of CaWO$_4$)

  • 이경호;김용철;방재철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.127-130
    • /
    • 2002
  • In this study, development of a new LTCC material using a non-glassy system was attempted with respect to reducing the fabrication process steps and cost down. Lowering the sintering temperature can be achieved by liquid phase sintering. For LTCC application, the starting material must have quality factor as high as possible in microwave frequency range. And also, the material should have a low dielectric constant for enhancing the signal propagation speed. Regarding these factors, dielectric constants of various materials were estimated by the Clausius-Mosotti equation. Among them, CaWO$_4$ was tamed out the suitable LTCC material. CaWO$_4$ can be sintered up to 98% of full density at 1200$^{\circ}C$ for 3 hours. It's measured dielectric constant, quality factor, and temperature coefficient of resonant frequency were 10.15, 62880GHz, and -27.8ppm/$^{\circ}C$, respectively. In order to modify the dielectric properties and densification temperature, 0.5∼1.5 wt% LiF were added to CaWO$_4$. LiF addition reduced the sintering temperature/time down to 800$^{\circ}C$/10∼30min due to the reactive liquid phase sintering. Dielectric constant lowered from 10.15 to 9.38 and Q x fo increased up to 92000GHz with increasing LiF content.

  • PDF

Effects of the Sintering Atmosphere and Ni Content on the Liquid-phase Sintering of $TiB_2$-Ni

  • Suk-Joong L. Kang;Baung, Jin-Chul;Park, Yeon-Gyu;Kang, Eul-Son;Baek, Yong-Kee;Jung, Sug-Woo
    • 한국세라믹학회지
    • /
    • 제38권3호
    • /
    • pp.207-211
    • /
    • 2001
  • The effects of the sintering atmosphere and Ni content on t도 densification of TiB$_2$-Ni have been investigated. TiB$_2$powder compacts containing 10, 20, and 30 wt% Ni were liquid-phase sintered at 1500-1$700^{\circ}C$ in vacuum or in flowing Ar. The densification was enhanced as Ni content increased. For a given Ni content, the densification was faster in compacts in compacts with larger grain size. These densification behaviors agree well with the prediction of the recently developed pore-filling theory. For samples containing high Ni contents, 80TiB$_2$-20Ni and 70TiB$_2$-30Ni, the densification was faster in vacuum than in Ar. In particular, 70TiB$_2$-30Ni was fully densified at 1$700^{\circ}C$ for 60min in vacuum. The suppressed densification in Ar was due to the entrapped Ar in the isolated pores. On the other hand, for 90TiB$_2$-10Ni, the Ar-sintering resulted in higher densification than did the vacuum-sintering. This result was attributed to the suppression of Ni volatilization by the Ar in the furnace and a retarded isolation of pores due to the limited amount of liquid in the sample. Therefore, vacuum sintering is recommended for the preparation of TiB$_2$-Ni with a high Ni content while Ar sintering is recommended for the preparation of TiB$_2$-Ni with a low Ni content.

  • PDF

The Effect of the Sintering Additives on the Fabrication and Thermal Conductivity of Porous Sintered RBSN

  • Park, Young-Jo;Kim, Hai-Doo
    • 한국세라믹학회지
    • /
    • 제44권7호
    • /
    • pp.354-357
    • /
    • 2007
  • The nitriding and post-sintering behavior of silicon powder compact containing sintering additives of 2.3 wt% and 7 wt% were investigated in this study. Regardless of the liquid phase content, elongated large grains of a typical morphology evolved in the post-sintered specimens. Phase analysis revealed a complete phase transformation into ${\beta}-Si_3N_4$ in both porous systems. Oxynitride second phases (mellilite) precipitated in the latter, while those were free in the former containing less amount of liquid phase. The post-sintering condition that yielded a favorable microstructure for a filter application was achieved when the specimens were soaked at $1800^{\circ}C$ for 2 h. It was found that the thermal conductivity of porous $Si_3N_4$ ceramics is dominated by the porosity more than this factor is influenced by the addition of $Al_2O_3$.

MAS계에서 3Y-TZP 첨가에 따른 독립 기공 생성기구와 기계적 성질 (Isolated Pore Generation Mechanism and Mechanical Properties in MAS System with 3Y-TZP)

  • 최성철;박현철
    • 한국세라믹학회지
    • /
    • 제30권11호
    • /
    • pp.881-890
    • /
    • 1993
  • MAS system has narrow sintering temp. range due to the liquid phae sintering and thereby densify rapidly. And especially, its poor mechanical properties limitedthe industrial application. In this study, the improvement of mechanical properties and densification is suggested by the consideration of the toughening mechanisms and isolated pore generation mechanism which is derived by the liquid phase sintering theory in 3Y-TZP added composites. After Pressureless sintering up to 140$0^{\circ}C$ for 5hr, the dihedral angle and contact angle are analyzed by the observation of microstructure. As a result of microstructure analysis, the sintering stage of the specimen sintered for 5hr is analyzed as solid-skeleton stage. And the isolated pore generation mechanisms are considered as (1) The swelling of the liquid phase is predominent due to the facts that dihedral angle is larger than 60$^{\circ}$, contact angle is large and that liquid volume fraction is smaller than 10%. (2) The porous characteristics of the MAS system is also suggested as: the SiO2-rich liquid film is firstly formed at the srface and therefore this reduces the contiguity of the pore, which induces the isolated pore. The strength and fracture toughness increased with the addition of 3Y-TZP and the main fracture toughness improvement mechanisms are analyzed as the crack deflection.

  • PDF

산화물계의 액상소결에서 입자 형상이 입자성장 거동에 미치는 영향 (The effect of grain shape on grain growth behavior of oxide system during liquid phase sintering)

  • 조동희;박상엽
    • 한국결정성장학회지
    • /
    • 제11권3호
    • /
    • pp.127-131
    • /
    • 2001
  • 산화물계의 액상소결시 액상량을 변수로 하여 입자형성이 입자성장 거동에 미치는 영향을 고찰하였다. 산화물계 모델로 구형입자의 경우는 MgO$CaMgSiO_{4}$계를 선택하였으며, 각진입자의 경우는 $Al_{2}O_{3}$/ $CaAl_{2}Si_{2}O_{8}$계를 선택하였다. 구형입자인 MgO의 경우 액상량 증가에 따라 입자크기가 감소하였으나,각진입자인 $Al_{2}O_{3}$ 입자의 경우는 계면지배과정에 의해 성장하는 반면, 거친 고상/액상계면을 지닐 것으로 예상되는 구형 MgO입자의 경우는 확산지배과정에 의해 성장하였다.

  • PDF

$B_4C-SiC$ 복합체의 상압소결거동 (Sintering Behavior of $B_4C-SiC$ Composite)

  • 김득중;강을손
    • 한국세라믹학회지
    • /
    • 제31권7호
    • /
    • pp.739-744
    • /
    • 1994
  • The B4C-C system was investigated to gain an understanding of the sintering behaviors of B4C. In order to get sintered density of 97% TD, sintering temperature of 225$0^{\circ}C$ was necessary. Since such a high temperature operation is actually difficult on a commercial basis, our objective was to examine the possibility of decreasing the sintering temperature by adding SiC. The addition of SiC in B4C increases the sintering rate about at 210$0^{\circ}C$ and results in a fine microstructure with more than 98% relative density on 55 wt% B4C-40wt% SiC-5 wt% C composition. The probability of liquid phase sintering was investigated, but the evidences of liquid phase formation were not observed with XRD and TEM observation. It was proposed that the addition of SiC and carbon to B4C reduce interface energy during sintering, which results in enhanced grain-boundary diffusion. Thus, the enhanced grain-boundary diffusion and retarded grain growth by SiC improve densification.

  • PDF

상압소결 $\beta$-SiC에 있어서 표면부에서의 액상집중과 미세구조의 변화 (Concentration of Liquid-phase in the Surface Region and Microstructural Change in Pressureless Sintered$\beta$-SiC)

  • 이종국;양권승;김환
    • 한국세라믹학회지
    • /
    • 제33권8호
    • /
    • pp.921-927
    • /
    • 1996
  • The liquid-phase concentration from the interior to the surface region and its influence on the microstructural changes were investigated in pressureless sintered $\beta$-SiC Surface reaction-layer was formed by reaction of packing powder and volatile components on the surface during sintering which was induced the concentration of liquid-phase in the surface regions. The microstructural changes between the surface region and the interior were appeared in sintered specimen which was resulted from the difference of liquid-phase content during sintering. Microstructural changes were observd with the depth of about 250${\mu}{\textrm}{m}$ from he surface. The grain size and aspect ratio of SiC in the interior are larger than those in the surface region and the rate of transforma-tion of $\beta$-to $\alpha$-SiC during sintering is higher in the interior than that in the surface region.

  • PDF

Various Master Sintering Curve Concepts and its Applications

  • Park, Seong-Jin;Blaine, Deborah C.;German, Randall M.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.66-67
    • /
    • 2006
  • The master sintering curve (MSC) is derived from densification data over a range of heating rates and temperatures. To improve the accuracy, several modifications were proposed: multi-phase MSC for solid state sintering with phase changes, MSC for liquid phase sintering, and MSC with consideration of grain growth. The developed MSC models were applied to several material systems such as molybdenum, stainless steels, and tungsten heavy alloys (WHA), in order to evaluate the effect of compaction pressure, phase change, grain growth, and composition on densification, to classify regions having different sintering mechanism, and to help engineer design, optimize, and monitor sintering cycles.

  • PDF

액상소결법에 의해 제조된 탄화규소 재료의 특성에 대한 연구 (A Study on Properties of SiC material Fabricated by Liquid Phase Sintering)

  • 이상필;곽재환;이진경
    • 한국산업융합학회 논문집
    • /
    • 제26권6_2호
    • /
    • pp.1019-1024
    • /
    • 2023
  • Ceramic materials have excellent material properties such as stability at high temperatures, chemical stability, corrosion resistance, and wear resistance, so they are applicable even in extreme environments of high temperature and pressure. In particular, silicon carbide can be applied in the field of structural ceramics due to its characteristics of high strength, hardness, corrosion resistance, and heat resistance even at high temperatures. In this study, considering the application of silicon carbide materials to next-generation turbines, silicon carbide materials were manufactured using a liquid phase sintering method. When manufacturing liquid phase sintered silicon carbide, sintering additives were added to lower the sintering temperature and densify the material. In Al2O3-SiO2, it was confirmed that the secondary product of the sintering additive was observed as a slightly dark area and was evenly distributed overall, and the fracture surface of Al2O3-SiO2 was in the form of transgranular fracture in which cracks progressed along the crystal plane, and the flexural strength for Al2O3-SiO2 was about 445.6 MPa.