• Title/Summary/Keyword: liquid phase shifter

Search Result 2, Processing Time 0.027 seconds

Development of Liquid Stub and Phase Shifter

  • Wang, Son-Jong;Yoon, Jae-Sung;Hong, Bong-Guen
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.201-208
    • /
    • 2001
  • The high power RF transmission line components are required for transmitting MW level RF power continuously in RF heating and current drive system which heat the plasma and produce plasma current in fusion reactor The liquid stub and phase shifter is proposed as the superior to the conventional stub and phase shifter. Experimental results show that they are reliable and easy to operate compared to the conventional stub and phase shifter. There is no distortion of reflected power during the raising of the liquid level. RF breakdown voltage is over 40kV. Temperature increment of the liquid is expected not to be severe. These results verify that the liquid stub and phase shifter can be used reliably in the high power continuous RF facilities.

  • PDF

A study on the peristaltic waveform of valveless PZT pump using disk type multi PZTs (다수 개 디스크 PZT 를 이용한 밸브리스 압전펌프의 연동구동 파형에 관한 연구)

  • Ham Y.B.;Park J.H.;Yun D.H.;Kim H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1824-1827
    • /
    • 2005
  • For application to micro fluid control systems such as ${\mu}TAS$ (Micro Total Analysis Systems) and DDS (Drug Delivery Systems), it is very significant to handle precise and minute flow rates with low pressure pulsation. In this study, a novel valveless piezoelectric pump using peristaltic motion with three disk type PZT actuators is presented. The newly devised pump with an effective size of $70mm{\times}60mm{\times}55mm$ has three actuator layers connected in series from inlet to outlet. The PZT actuator has a maximum displacement of 240 ${\mu}m$ and a maximum force of 1.6 N. When the driving voltage for PZT actuators is sequentially applied with a certain phase shift, the pumping is performed by peristaltic motion of liquid volume. The working fluid is shut off without the driving voltage. Three methods for sequential driving are proposed and experimentally investigated. First and second methods utilize an intermittent sinusoidal waveform with phase shift of $90{\circ}\;and\;120^{\circ}$, respectively. Third method uses a rectangular waveform with phase shift of $90^{\circ}$. A controller with multi-phase shifter is designed and fabricated. Then, frequency and voltage-flow rate characteristics and load pressure-flow rate characteristics are experimentally investigated to verify the validity of the developed pump.

  • PDF