• Title/Summary/Keyword: liquid metal

Search Result 1,126, Processing Time 0.029 seconds

Leakage Current Mechanism of Thin-Film Diode for Active-Matrix Liquid Crystal Displays

  • Lee, Myung-Jae;Chung, Kwan-Soo;Kim, Dong-Sik
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.3
    • /
    • pp.126-132
    • /
    • 2002
  • The origin of image-sticking in metal-insulator-metal type thin-film diode liquid crystal displays(TFD-LCDs) is the asymmetric current-voltage(I-V) characteristic of TFD element. We developed that TFD-LCDs have reduced-image-sticking. Tantalum pentoxide(Ta$_2$O$\sub$5/) is a candidate for use in metal-insulator-metal(MIM) capacitors in switching devices for active-matrix liquid crystal displays(AM-LCDs). High quality Ta$_2$O$\sub$5/ thin films have been obtained from anodizing method. We fabricated a TFD element using Ta$_2$O$\sub$5/ films which had perfect current-voltage symmetry characteristics. We applied novel process technologies which were postannealed whole TFD element instead of conventional annealing to the fabrication. One-Time Post-Annealing(OPTA) heat treatment process was introduced to reduce the asymmetry and shift of the I-V characteristics, respectively. OPTA means that the whole layers of lower metal, insulator, and upper metal are annealed at one time. Futhermore, in this paper, we discussed the effects of top-electrode metals and annealing conditions.

  • PDF

The Tensile Strength at Room Temperature of Brazing Section for Materials used for Liquid Rocket Engine Combustion Chamber (액체 로켓엔진 연소기 사용 재료의 상온 브레이징부 인장강도 특성)

  • 정용현;류철성;최민수
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.4
    • /
    • pp.73-79
    • /
    • 2003
  • The tensile strength test and the analysis for the section of brazing were performed in the cases of materials used for combustion chamber of regeneratively cooled liquid rocket engine. BNi-2 and BNi-7 based on nickel were used for brazing as filler metal. The properties of material and filler metal were analyzed by tensile strength test and metal microscope for 12 specimens. The tensile-strength of brazing for chrome-copper alloy and other kinds of alloy was higher than that of chrome-zirconium-copper alloy and other kinds of alloy The tensile strength in the case of BNi-2 as filler metal was higher than that of BNi-7 because the wetting property of BNi-2 was better than that of BNi-7.

Algorithm Development for Infiltration Control in Component Fabrication Process of Metal Matrix Composites and Their Evaluation (금속기복합재료의 부품 제조공정에 관한 함침제어알고리즘 개발 및 평가)

  • Kang, Chung-Gil;Yun, Kung-Sik
    • Journal of Korea Foundry Society
    • /
    • v.16 no.6
    • /
    • pp.523-536
    • /
    • 1996
  • This paper relates to fabrication processing analysis of metal matrix composites by the injection of liquid metal into a fibrous preforms. One dimensional heat transfer analysis during squeeze infiltration process of aluminum base composites has been studied. An analysis method was investigated for the temperature distribution, infiltration velocity and melt infiltration characteristics with the commercial preform with short fiber array. When molten metal is infiltrated in a fibrous preform with random orientation, phase transformation will be occurred in a region such as molten metal, solidified region, preform region and infiltration composites region. a mathematical modelling for a solidification phenomena in fabrication process of metal matrix composites using a squeeze infiltration technique was investigated by the basic relations for liquid metal into a fibrous preform. The temperature distribution of theoretical results was compared with experimental data.

  • PDF

Podand-Mediated Transport of $Ag^+$ in a Bulk Liquid Membrane System

  • 조문환;이상철;양승창;신송석;김경태
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.12
    • /
    • pp.1109-1111
    • /
    • 1996
  • The Podand Ⅰ (Figure 1) has been studied as cation carrier in a bulk liquid membrane system. Ag+ and some other transition metal ions (M2+=Cu, Ni, Co, Zn, and Cd) have been transported using the podand as carrier in a bulk liquid membrane system. Studies on the transport of equimolar mixtures of two or three competing components have also been carried out with the same system. Ag+ exhibited a higher transport rate than the other M2+ in the competitive experiments. Ligand structure and the equilibrium constant for complex formation are important parameters in the transport of the metal ions.

Synthesis of Propylene Carbonate over Metal containing Ionic Liquid Catalysts (금속 함유 이온성 액체 촉매상에서의 프로필렌 카보네이트의 합성)

  • Moon, Ye-Ji;Ji, Dahye;Kim, Dong-Woo;Kim, Hyeon-Gook;Cho, Deug-Hee
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.153-157
    • /
    • 2016
  • In this study, three different metal-containing ionic liquid catalysts were prepared by metal insertion and characterized by various physicochemical analytic methods. The catalytic performance of the metal containing ionic liquids in the cycloaddition of $CO_2$ with propylene oxide (PO) to produce propylene carbonate (PC) was investigated under the solvent free condition. The order of approximate rate constants ($K_{app}$) for the metal containing ionic liquid catalysts was $(MeIm)_2ZnCl_2$, > $(MeIm)_2FeCl_2$ > $(MeIm)_2CuCl_2$. These results are in accord with the experimentally obtained activity order of the different metal containing ionic liquid catalysts.

Conductive adhesive with transient liquid-phase sintering technology for high-power device applications

  • Eom, Yong-Sung;Jang, Keon-Soo;Son, Ji-Hye;Bae, Hyun-Cheol;Choi, Kwang-Seong
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.820-828
    • /
    • 2019
  • A highly reliable conductive adhesive obtained by transient liquid-phase sintering (TLPS) technologies is studied for use in high-power device packaging. TLPS involves the low-temperature reaction of a low-melting metal or alloy with a high-melting metal or alloy to form a reacted metal matrix. For a TLPS material (consisting of Ag-coated Cu, a Sn96.5-Ag3.0-Cu0.5 solder, and a volatile fluxing resin) used herein, the melting temperature of the metal matrix exceeds the bonding temperature. After bonding of the TLPS material, a unique melting peak of TLPS is observed at 356 ℃, consistent with the transient behavior of Ag3Sn + Cu6Sn5 → liquid + Cu3Sn reported by the National Institute of Standards and Technology. The TLPS material shows superior thermal conductivity as compared with other commercially available Ag pastes under the same specimen preparation conditions. In conclusion, the TLPS material can be a promising candidate for a highly reliable conductive adhesive in power device packaging because remelting of the SAC305 solder, which is widely used in conventional power modules, is not observed.

ESTABLISHMENT OF A NEURAL NETWORK MODEL FOR DETECTING A PARTIAL FLOW BLOCKAGE IN AN ASSEMBLY OF A LIQUID METAL REACTOR

  • Seong, Seung-Hwan;Jeong, Hae-Yong;Hur, Seop;Kim, Seong-O
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.43-50
    • /
    • 2007
  • A partial flow blockage in an assembly of a liquid metal reactor could result in a cooling deficiency of the core. To develop a partial blockage detection system, we have studied the changes of the temperature fluctuation characteristics in the upper plenum according to changes of the t10w blockage conditions in an assembly. We analyzed the temperature fluctuation in the upper plenum with the Large Eddy Simulation (LES) turbulence model in the CFX code and evaluated its statistical parameters. Based on the results of the statistical analyses, we developed a neural network model for detecting a partial flow blockage in an assembly. The neural network model can retrieve the size and the location of a flow blockage in an assembly from a change of the root mean square, the standard deviation, and the skewness in the temperature fluctuation data. The neural network model was found to be a possible alternative by which to identify a flow blockage in an assembly of a liquid metal reactor through learning and validating various flow blockage conditions.

A new reconfigurable liquid-metal-antenna-based sensor

  • Zhou, Xiaoping;Fu, Yihui;Zhu, Hantao;Yu, Zihao;Wang, Shanyong
    • Smart Structures and Systems
    • /
    • v.30 no.4
    • /
    • pp.353-369
    • /
    • 2022
  • In this paper, a new sensor chip with frequency reconstruction range of 2.252 GHz ~ 2.450 GHz is designed and fabricated. On this basis, a self-designed "T-shaped" shell is added to overcome the disadvantage of uneven deformation of the traditional steel shell, and the range of the sensor chip is expanded to 0 kN ~ 96 kN. The liquid metal antenna is used to carry out a step-by-step loading test, and the relationship between the antenna resonance frequency and the pressure load is analyzed. The results show that there is a good linear relationship between the pressure load and the resonant frequency. Therefore, the liquid metal antenna can be regarded as a pressure sensor. The cyclic loading and unloading experiments of the sensor are carried out, and different loading rates are used to explore the influence on the performance of the sensor. The loading and unloading characteristic curves and the influence characteristic curves of loading rate are plotted. The experimental results show that the sensor has no residual deformation during the cycle of loading and unloading. Moreover, the influence of temperature on the performance of the sensor is studied, and the temperature correction formula is derived.

Mixing Effect by the Geometry of Static Mixer with Turbulent In-Situ Mixing Process (난류 용탕 In-Situ 합성법을 위한 스태틱 믹서의 형상에 따른 혼합 효과)

  • Lee, Dae-Sung;Kim, Hyo-Geun;Ha, Man-Yeong;Park, Yong-Ho;Park, Ik-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1307-1312
    • /
    • 2005
  • Turbulent in-situ mixing process is a new material process technology to get dispersed phase in nanometer size by controlling reaction of liquid/liquid, liquid/solid and liquid/gas, flow and solidification speed simultaneously. In this study mixing, the key technology to this synthesis method will be studied by computational fluid dynamics. For the simulation of mixing of liquid metal, static mixers will be investigated. Two inlets for different liquid metal meet and merge like 'Y' shape tube. The tube has various shapes such as straight and curved. Also, the radius of curve will be varied. The performance of mixer will be evaluated with quantitative analysis with coefficient of variance of mass fraction. Also, detailed plots of intersection will be presented to understand effect of mixer shape on mixing.

Wearable Force Sensor Using 3D-printed Mold and Liquid Metal (삼차원 프린트된 몰드와 액체 금속을 이용한 웨어러블 힘 센서 개발)

  • Kim, Kyuyoung;Choi, Jungrak;Jeong, Yongrok;Kim, Minseong;Kim, Seunghwan;Park, Inkyu
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.198-204
    • /
    • 2019
  • In this study, we propose a wearable force sensor using 3D printed mold and liquid metal. Liquid metal, such as Galinstan, is one of the promising functional materials in stretchable electronics known for its intrinsic mechanical and electronic properties. The proposed soft force sensor measures the external force by the resistance change caused by the cross-sectional area change. Fused deposition modeling-based 3D printing is a simple and cost-effective fabrication of resilient elastomers using liquid metal. Using a 3D printed microchannel mold, 3D multichannel Galinstan microchannels were fabricated with a serpentine structure for signal stability because it is important to maintain the sensitivity of the sensor even in various mechanical deformations. We performed various electro-mechanical tests for performance characterization and verified the signal stability while stretching and bending. The proposed sensor exhibited good signal stability under 100% longitudinal strain, and the resistance change ranged within 5% of the initial value. We attached the proposed sensor on the finger joint and evaluated the signal change during various finger movements and the application of external forces.