• Title/Summary/Keyword: liquid limits

Search Result 444, Processing Time 0.022 seconds

Development of simultaneous analytical method for investigation of ketamine and dexmedetomidine in feed (사료 내 케타민과 덱스메데토미딘의 잔류조사를 위한 동시분석법 개발)

  • Chae, Hyun-young;Park, Hyejin;Seo, Hyung-Ju;Jang, Su-nyeong;Lee, Seung Hwa;Jeong, Min-Hee;Cho, Hyunjeong;Hong, Seong-Hee;Na, Tae Woong
    • Analytical Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.136-142
    • /
    • 2022
  • According to media reports, the carcasses of euthanized abandoned dogs were processed at high temperature and pressure to make powder, and then used as feed materials (meat and bone meal), raising the possibility of residuals in the feed of the anesthetic ketamine and dexmedetomidine used for euthanasia. Therefore, a simultaneous analysis method using QuEChERS combined with high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry was developed for rapid residue analysis. The method developed in this study exhibited linearity of 0.999 and higher. Selectivity was evaluated by analyzing blank and spiked samples at the limit of quantification. The MRM chromatograms of blank samples were compared with those of spiked samples with the analyte, and there were no interferences at the respective retention times of ketamine and dexmedetomidine. The detection and quantitation limits of the instrument were 0.6 ㎍/L and 2 ㎍/L, respectively. The limit of quantitation for the method was 10 ㎍/kg. The results of the recovery test on meat and bone meal, meat meal, and pet food showed ketamine in the range of 80.48-98.63 % with less than 5.00 % RSD, and dexmedetomidine in the range of 72.75-93.00 % with less than 4.83 % RSD. As a result of collecting and analyzing six feeds, such as meat and bone meal, prepared at the time the raw material was distributed, 10.8 ㎍/kg of ketamine was detected in one sample of meat and bone meal, while dexmedetomidine was found to have a concentration below the limit of quantitation. It was confirmed that the detected sample was distributed before the safety issue was known, and thereafter, all the meat and bone meal made with the carcasses of euthanized abandoned dogs was recalled and completely discarded. To ensure the safety of the meat and bone meal, 32 samples of the meat and bone meal as well as compound feed were collected, and additional residue investigations were conducted for ketamine and dexmedetomidine. As a result of the analysis, no component was detected. However, through this investigation, it was confirmed that some animal drugs, such as anesthetics, can remain without decomposition even at high temperature and pressure; therefore, there is a need for further investigation of other potentially hazardous substances not controlled in the feed.

Simultaneous determinations of anthracycline antibiotics by high performance liquid chromatography coupled with radial-flow electrochemical cell (고성능 액체 크로마토그래피/방사흐름 전기화학전지를 이용한 안트라사이클린계 항생제의 동시 정량)

  • Cho, Yonghee;Hahn, Younghee
    • Analytical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.308-314
    • /
    • 2007
  • The analytical method of HPLC with the radial-flow electrochemical cell (RFEC) has been developed to determine doxorubicin, epirubicin, nogalamycin, daunorubicin and idarubicin simultaneously by employing a reversed-phase chromatography. Anthracyclines were detected at -0.74 V vs. a Ag/AgCl (0.01 M NaCl) reference electrode, a potential of diffusion current plateau in the mobile phase. At a $V_f$ of 1.0 mL/min doxorubicin, epirubicin, daunorubicin and idarubicin appeared at a retention time ($t_r$) of 6.4 min, 7.4 min, 12.7 min and 18.4 min, respectively, while at a $V_f$ of 0.6 mL/min, doxorubicin, epirubicin, nogalamycin, daunorubicin and idarubicin appeared at a $t_r$ of 9.9 min, 11.5 min, 13.5 min, 19.6 min and 28.7 min, respectively. The linearity between each anthracycline injected ($2.40{\times}10^{-7}M{\sim}1.42{\times}10^{-5}M$) and peak area (charge) was excellent with the square of the correlation coefficient ($R^2$) higher than 0.999. The detection limits were $1.0{\times}10^{-8}M{\sim}1.5{\times}10^{-7}M$ for the five anthracyclines. Within-day precision for the five anthracyclines were in reasonable relative standard deviations less than 3 % ($1.00{\times}10^{-6}M{\sim}1.42{\times}10^{-5}M$) except the lower concentrations less than $0.7{\mu}M$. Solid phase extractions of $1.00{\times}10^{-5}M$ epirubicin, $0.48{\times}10^{-5}M$ nogalamycin and $1.52{\times}10^{-5}M$ daunorubicin from human serum with a $C_{18}$ cartridge resulted in 97 %, 100 % and 90 % of recoveries, respectively.

Optimization and Applicability Verification of Simultaneous Chlorogenic acid and Caffeine Analysis in Health Functional Foods using HPLC-UVD (HPLC-UVD를 이용한 건강기능식품에서 클로로겐산과 카페인 동시분석법 최적화 및 적용성 검증)

  • Hee-Sun Jeong;Se-Yun Lee;Kyu-Heon Kim;Mi-Young Lee;Jung-Ho Choi;Jeong-Sun Ahn;Jae-Myoung Oh;Kwang-Il Kwon;Hye-Young Lee
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.2
    • /
    • pp.61-71
    • /
    • 2024
  • In this study, we analyzed chlorogenic acid indicator components in preparation for the additional listing of green coffee bean extract in the Health Functional Food Code and optimized caffeine for simultaneous analysis. We extracted chlorogenic acid and caffeine using 30% methanol, phosphoric acid solution, and acetonitrile-containing phosphoric acid and analyzed them at 330 and 280 nm, respectively, using liquid chromatography. Our analysis validation results yielded a correlation coefficient (R2) revealing a significance level of at least 0.999 within the linear quantitative range. The chlorogenic acid and caffeine detection and quantification limits were 0.5 and 0.2 ㎍/mL and 1.4, and 0.4 ㎍/mL, respectively. We confirmed that the precision and accuracy results were suitable using the AOAC validation guidelines. Finally, we developed a simultaneous chlorogenic acid and caffeine analysis approach. In addition, we confirmed that our analysis approach could simultaneously quantify chlorogenic acid and caffeine by examining the applicability of each formulation through prototypes and distribution products. In conclusion, the results of this study demonstrated that the standardized analysis would expectably increase chlorogenic acidcontaining health functional food quality control reliability.

Development of Analytical Method for Detection of Fungicide Validamycin A Residues in Agricultural Products Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 살균제 Validamycin A의 시험법 개발)

  • Park, Ji-Su;Do, Jung-Ah;Lee, Han Sol;Park, Shin-min;Cho, Sung Min;Shin, Hye-Sun;Jang, Dong Eun;Cho, Myong-Shik;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.22-29
    • /
    • 2019
  • Validamycin A is an aminoglycoside fungicide produced by Streptomyces hygroscopicus that inhibits trehalase. The purpose of this study was to develop a method for detecting validamycin A in agricultural samples to establish MRL values for use in Korea. The validamycin A residues in samples were extracted using methanol/water (50/50, v/v) and purified with a hydrophilic-lipophilic balance (HLB) cartridges. The analyte was quantified and confirmed by liquid chromatograph-tandem mass spectrometer (LC-MS/MS) in positive ion mode using multiple reaction monitoring (MRM). Matrix-matched calibration curves were linear over the calibration ranges (0.005~0.5 ng) into a blank extract with $R^2$ > 0.99. The limits of detection and quantification were 0.005 and 0.01 mg/kg, respectively. For validation validamycin A, recovery studies were carried out three different concentration levels (LOQ, $LOQ{\times}10$, $LOQ{\times}50$, n = 5) with five replicates at each level. The average recovery range was from 72.5~118.3%, with relative standard deviation (RSD) less than 10.3%. All values were consistent with the criteria ranges requested in the Codex guidelines (CAC/GL 40-1993, 2003) and the NIFDS (National Institute of Food and Drug Safety) guideline (2016). Therefore, the proposed analytical method is accurate, effective and sensitive for validamycin A determination in agricultural commodities.