• Title/Summary/Keyword: liquid level system

Search Result 315, Processing Time 0.035 seconds

A Study on Comparison of the Characteristic Test of Discharge Water Flowmeters (Electromagnetic Flowmeter, Parshall Flume) (방류수 유량계(전자기유량계, 파샬플룸)의 특성평가 연구)

  • An, Yang-ki;Kim, Jee-young;Kim, Kum-hee;Jang, Hee-soo;Jung, Jung-pil;Choi, Jong-woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.57-62
    • /
    • 2015
  • The test of comparing liquid flow calibration system (approved by KOLAS) for accuracy and structure change test was performed in the test bed in order to evaluate the typical characteristics of the electromagnetic flow meters and parshall flume that are generally used in the water discharging facilities. The results of the accuracy comparing test with liquid flow calibration system showed the error of less than 2%. Pharshall plume got error up to -8.3% (low flow) from the flow rate test, but less than 4% from the accumulated flow test because of offset error at high flow rate and low flow rate. Evaluation of structual change test was tested with only parshall flume using structure and it consisted of installation angle (parshall flume and level sensor) and position change. Installation angle, water level sensor angle and position changing test for parshall flume had errors of 3.1%~-9.2%, 0.4%~-5.6% and 0.2%~1.3% respectively. Especially, the error showed the largest increase when the water level sensor measured the point of decreased flow by the structure change. Therefore, error factors (change of straight pipe length, installation of obstacle or effect of foreign substances on water level sensor) that can often occur in the field should be derived and the research for optimized installation method should be carried out continuously.

On the New Design of Liquid Dome Chair in Membrane Type LNG Carrier (멤브레인형 LNG선박의 리퀴드 돔 체어 구조개발)

  • Kim, Jeong-Hwan;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.5
    • /
    • pp.361-367
    • /
    • 2017
  • A membrane type LNG cargo tank is equipped with a pump tower and a liquid dome for loading and unloading of LNG. However, the membrane running continuously on the tank wall to prevent leakage of LNG is interrupted by the liquid dome, hence care should be taken in the design of liquid dome and its substructures. In case of GTT NO96 membrane type cargo containment system, chair structure is arranged along the periphery of the liquid dome targeting to support the membrane which is exposed to the both hull girder and thermal load. This paper proposes a new and simple chair structure, which outperforms traditional design from productivity point of view maintaining same level of structural safety. Strength assessment on the new design was performed to guarantee the structural safety of the new design, which includes strength, fatigue and crack propagation analysis.

Studies on the Main Level-Grading Factors for Establishment of LFQC (Liquid Fertilizer Quality Certification) System of Livestock Manure in Korea (가축분뇨 액비품질인증제도 구축을 위한 목표요소에 관한 연구)

  • Jeon, Sang-Joon;Kim, Soo-Ryang;Kim, Dong-Gyun;Rho, Kyung-Sang;Choi, Dong-Yoon;Lee, Myung-Gyu
    • Journal of Animal Environmental Science
    • /
    • v.18 no.2
    • /
    • pp.111-122
    • /
    • 2012
  • Establishment of the LFQC (Liquid Fertilizer Quality Certification) system is very urgent issue for recycling livestock manure as renewable resources in Korea faced with environmental problem of manure application to land due to intensive livestock farming. In this study, we investigated relevant laws and regulations on livestock manure fertilizer, certifications of eco-friendly agricultural products, government policies on livestock manure management to establish reasonable direction of Korean LFQC (Liquid Fertilizer Quality Certification) system. As a result from this study, the liquid fertilizers in 'LFQC' system could be classified as three levels according to the usage patterns in field; 1st. Individual Farm Level (IFL), 2nd. Joint Farm Level (JFL), and 3rd. Commercial Level (CML). And finally, we found some characteristics in 'Main Level-Grading Factors' of liquid fertilizer such as fertilizing value, harmfulness, stability, uniformity, economic effect, storage potential, commercial value, functionality. Those items were considered to be the key factors for the establishment of 'LFQC' system. More research on 'Evaluation Standards' for concrete guideline and on the 'Main Level-Grading Factors' be needed to complete Korean LFQC system.

Study of hydrodynamics and iodine removal by self-priming venturi scrubber

  • Jawaria Ahad;Talha Rizwan ;Amjad Farooq ;Khalid Waheed ;Masroor Ahmad ;Kamran Rasheed Qureshi ;Waseem Siddique ;Naseem Irfan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.169-179
    • /
    • 2023
  • Filtered containment system is a passive safety system that controls the over-pressurization of containment in case of a design-based accidents by venting high pressure gaseous mixture, consisting of air, steam and radioactive particulate and gases like iodine, via a scrubbing system. An indigenous lab scale facility was developed for research on iodine removal by venturi scrubber by simulating the accidental scenario. A mixture of 0.2 % sodium thiosulphate and 0.5 % sodium hydroxide, was used in scrubbing column. A modified mathematical model was presented for iodine removal in venturi scrubber. Improvement in model was made by addition of important parameters like jet penetration length, bubble rise velocity and gas holdup which were not considered previously. Experiments were performed by varying hydrodynamic parameters like liquid level height and gas flow rates to see their effect on removal efficiency of iodine. Gas holdup was also measured for various liquid level heights and gas flowrates. Removal efficiency increased with increase in liquid level height and gas flowrate up to an optimum point beyond that efficiency was decreased. Experimental results of removal efficiency were compared with the predicted results, and they were found to be in good agreement. Maximum removal efficiency of 99.8% was obtained.

Application of Subirrigation Using Capillary Wick System to Pot Production

  • Lee, Chi-Won;So, In-Sup;Jeong, Sung-Woo;Huh, Moo-Ryong
    • Journal of agriculture & life science
    • /
    • v.44 no.3
    • /
    • pp.7-14
    • /
    • 2010
  • Alternative subirrigation way, capillary wick system (CWS) was tested to reduce labor cost, waste water, contamination of ground water, and use of fungicide compared to overhead irrigation system (OIS). CWS helped reduce remarkably the working hours for watering from 4 hours in OSI to just 5 minutes. Labor cost was saved 98% in CWS compared to OIS. By the physical characteristics of various growing media, 1 coconut coir+2 perlite (v/v) mixture was selected because it had an ideal distribution of three phase, e.g. 1 solid: 1 liquid: 2 gas phase. Medium mixture containing scoria had so high bulk and particle density to hurt root. In bark-containing medium, the liquid phase and the percent saturation of liquid phase with time elapsed was lower than that of other mixture. It meant that the mixture contained very low level of water. Application of CWS for cyclamen pot production played an important role in reducing the incident of fusarium wilt symptom from 18% in conventional over watering system to 4%. Cyclamen pot irrigated by capillary wick had shorter petiole and more leaves than those by overhead watering. As a result, this system was highly beneficial to get uniform pot products with high quality. It improved water and nutrient solution efficiency relative to conventional overhead irrigation system (OIS).

Liquid Level System Realizing Van de Vusse Reactor Dynamics and its Control Experiments (Van de Vusse 반응기 동특성을 구현하는 액위시스템 및 제어 실험)

  • Lee, Jietae
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.184-189
    • /
    • 2020
  • Van de Vusse reactors show the maximum points in input-output steady state maps and dramatic changes in their dynamic characteristics around those maximum points. According to their operating regions, there appear sign changes in steady state gains and nonlinear characteristics such as non-minimum phase dynamics which cause difficulties in applying controllers. Many nonlinear controllers that are available and newly designed are applied to these Van de Vusse reactor processes and their performances are tested. Reactor examples with real reactions have been reported. However, due to difficulties in constructing and operating chemical reactor systems, they are not adequate to be used for real applications of control experiments and hence most of results are based on simulations studies. Here, we propose a liquid level system that realizes most of the steady state and dynamic characteristics of Van de Vusse reactor, and two nonlinear control methods that can be used as base methods to compare nonlinear controllers newly designed. Liquid level experimental system and two nonlinear control methods are very simple and can be used to test performances of nonlinear controllers in practice.

System Analysis of a Gas Generator Cycle Rocket Engine

  • Cho, Won Kook;Kim, Chun IL
    • International Journal of Aerospace System Engineering
    • /
    • v.6 no.2
    • /
    • pp.11-16
    • /
    • 2019
  • A system analysis program has been developed for a gas generator cycle liquid rocket engine of 30 ton class. Numerical models have been proposed for a combustor, a turbopump, a gas generator and pressure drop through a regenerative cooling system. Numerical algorithm has been validated by comparing with the published data of MC-1. The major source of error is not the numerical algorithm but the imperfect performance models of subsystems. So the precision of the program can be improved by revising the performance models using experimental data. The sea level specific impulse and vacuum specific impulse have been demonstrated for a 30 ton class gas generator engine. The optimal condition of combustor pressure and mixture ratio for specific impulse which is a typical characteristic of a gas generator cycle engine has been illustrated.

The effect of composite-elastomer isolation system on the seismic response of liquid-storage tanks: Part I

  • Shahrjerdi, A.;Bayat, M.
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.513-528
    • /
    • 2018
  • A typical viable technique to decrease the seismic response of liquid storage tanks is to isolate them at the base. Base-isolation systems are an efficient and feasible solution to reduce the vulnerability of structures in high seismic risk zones. Nevertheless, when liquid storage tanks are under long-period shaking, the base-isolation systems could have different impacts. These kinds of earthquakes can damage the tanks readily. Hence, the seismic behaviour and vibration of cylindrical liquid storage tanks, subjected to earthquakes, is of paramount importance, and it is investigated in this paper. The Finite Element Method is used to evaluate seismic response in addition to the reduction of excessive liquid sloshing in the tank when subjected to the long-period ground motion. The non-linear stress-strain behaviour pertaining to polymers and rubbers is implemented while non-linear contact elements are employed to describe the 3-D surface-to-surface contact. Therefore, Nonlinear Procedures are used to investigate the fluid-structure interactions (FSI) between liquid and the tank wall while there is incompressible liquid. Part I, examines the effect of the flexibility of the isolation system and the tank aspect ratio (height to radius) on the tank wall radial displacements of the tank wall and the liquid sloshing heights. Maximum stress and base shear force for various aspect ratios and different base-isolators, which are subjected to three seismic conditions, will be discussed in Part II. It is shown that the composite-base isolator is much more effective than other isolators due to its high flexibility and strength combined. Moreover, the base isolators may decrease the maximum level pertaining to radial displacement.