• Title/Summary/Keyword: liquid flow

Search Result 2,932, Processing Time 0.031 seconds

Comparison of Performance Characteristics in the Chevron Type Plate Heat Exchanger with Performance Correlation (성능 예측 상관식에 따른 쉐브론 형태 판형 열교환기 성능 특성 비교)

  • Bae, Kyung-Jin;An, Sung-Kuk;Cho, Hyun-Uk;Nam, Sang-Chul;Cho, Hong-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.8
    • /
    • pp.535-542
    • /
    • 2011
  • The performance of a plate heat exchanger for using liquid solution in the absorption chiller-heater was analyzed. The model was developed by using the various performance prediction correlations. The performance characteristics of the plate heat exchanger with the mass flow rate ratio was verified by using experimental data. To investigate performance of plate heat exchanger with geometry variables, the chevron angle, corrugated wave length, and corrugation depth were changed. As a result, the capacity of Kim and Martin correlation models was similar with the experimental data, and the capacity difference was less than 2%. Besides, the pressure drop of Marin correlation model showed a similar variation with experimental data, and the difference of pressure drop was less than 1.5 kPa.

Hot-Fire Test and Performance Evaluation of Small Liquid-Monopropellant Thrusters under a Vacuum Environment (단일액체추진제 소형 추력기의 진공환경 연소시험 및 성능특성 평가)

  • Kim Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.84-90
    • /
    • 2004
  • A performance evaluation is made in terms of thrust, impulse bit. and specific impulses for a set of mono-propellant hydrazine thrusters producing 0.95 lbf of nominal thrust at an inlet pressure of 350 psia. With a brief description on the hot-firing test configuration and procedures. a typical data obtained from steady-state firing mode is given directly showing the variational behavior of propellant supply pressure, mass flow rate, vacuum condition, and thrust. The performance features are successfully compared to the reference criteria of 1-lbf standard mono-propellant rocket engine. Additionally. a statistical inter-thruster treatment is concisely depicted for the justification of selected thrusters as a grouped member of flight model for spacecraft propulsion system.

Computer Simulation of an Automotive Air-Conditioning in a Transient Mode

  • Oh, Sang-Han;Won, Sung-Pil
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.4
    • /
    • pp.220-228
    • /
    • 2002
  • The cool-down performance after soaking is very important in an automotive air-conditioning system and is considered as a key design variable. Therefore, transient characteristics of each system component are essential to the preliminary design as well as steady-state performance. The objective of this study is to develop a computer simulation model and ostinato theoretically the transient performance of an automotive air-conditioning system. To do that, the mathematical modelling of each component, such as compressor, condenser, receiver/drier, expansion valve, and evaporator, is presented first of all. The basic balance equations about mass and energy are used in modelling. For detailed calculation, condenser and evaporator are divided into many sub-sections. Each sub-section is an elemental volume for modelling. In models of expansion valve and compressor, dynamic behaviors are not considered in this analysis, but the quasisteady state ones are just considered, such as the relation between mass flow rate and pressure drop in expansion device, polytropic process in compressor, etc. Also it is assumed that there are no heat loss and no pressure drop in discharge, liquid, and suction lines. The developed simulation model is validated by comparing with the laboratory test data of an automotive air-conditioning system. The overall time-tracing properties of each component agreed well with those of test data in this case.

Frequency Response Characteristics of Air-Cooled Condenser in Case of Inputting Various Disturbances

  • Kim, Jae-Dol;Oh, Hoo-Kyu;Yoon, Jung-In
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.1
    • /
    • pp.14-28
    • /
    • 2000
  • The frequency response characteristics of a condenser were numerically studied for the control of refrigeration and air conditioning systems. The important parameters, such as the refrigerant flow rate, refrigerant temperature, air velocity, and air temperature at the condenser inlet, were analyzed. Superheated vapor, two phase, and subcooled liquid domain in condenser can be described by using the energy balance equation and the mass balance equation in refrigerant and tube wall, the basic equation for describing the dynamic characteristics of condenser can be derived. The transfer function for describing dynamic response of the condenser to disturbances can be obtained from using linearizations and Laplace transformations of the equation. From this transfer function, analytical investigation which affects the frequency responses of condenser has been made. Block diagrams were made based on the analytic transfer function; dynamic responses were evaluated in Bode diagrams on the frequency response. Through this study, it became possible that the information about the dynamic characteristics of air-cooled condenser is offered. The results may be used for determining the optimum design parameters in actual components and entire systems. Also, the mathematical models, frequency response may be used to help understanding, evaluate optimum design parameters, design control systems and determine on setting the best controller for the refrigeration and air-conditioning systems.

  • PDF

The effects of LNG-tank sloshing on the global motions of FLNG system

  • Hu, Zhi-Qiang;Wang, Shu-Ya;Chen, Gang;Chai, Shu-Hong;Jin, Yu-Ting
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.114-125
    • /
    • 2017
  • This paper addresses a study of inner-tank sloshing effect on motion responses of a Floating Liquefied Natural Gas (FLNG) system, through experimental analysis and numerical modeling. To investigate hydrodynamic characteristics of FLNG under the conditions of with and without LNG-tank sloshing, a series of numerical simulations were carried out using potential flow solver SESAM. To validate the numerical simulations, model tests on the FLNG system was conducted in both liquid and solid ballast conditions with 75% tank filling level in height. Good correlations were observed between the measured and predicted results, proving the feasibility of the numerical modeling technique. On the verified numerical model, Response Amplitude Operators (RAOs) of the FLNG with 25% and 50% tank filling levels were calculated in six degrees of freedom. The influence of tank sloshing with varying tank filling levels on the RAOs has been presented and analyzed. The results showed that LNG-tank sloshing has a noticeable impact on the roll motion response of the FLNG and a moderate tank filling level is less helpful in reducing the roll motion response.

Analysis of Unsteady Cavitating Flows in Fuel Injection Nozzle of Piezo-driven Injector by Eulerian-Lagrangian Multi-phase Method (Eulerian-Lagrangian 다상 유동해석법에 의한 피에조 인젝터의 노즐 내부 비정상 캐비테이션 유동해석)

  • Lee, Jin-Wook;Min, Kyung-Duk;Kang, Kern-Yong;Gavaises, M.;Arcoumanis, C.
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.38-45
    • /
    • 2004
  • This study describes the analysis results of unsteady cavitating flows behavior inside nozzle of the prototype piezo-driven injector. This piezo-driven injector has been recognised as one of the next generation diesel injector due to a higher driven efficiency than the conventional solenoid-driven injector. The three dimensional geometry model along the central cross-section regarding of one injection hole has been used to simulate the cavitating flows for injection time by at fully transient simulation with cavitation model. The cavitation model incorporates many of the fundamental physical processes assumed to take place in cavitating flows. The simulations performed were both fully transient and 'pseudo' steady state, even if under steady state boundary conditions. We could analyze the effect the pressure drop to the sudden acceleration of fuel, which is due to the fastest response of needle, on the degree of cavitation existed in piezo-driven injector nozzle

  • PDF

Quantitative Determination of Amitriptyline and Its Metabolite in Rat Plasma by Liquid Chromatography-tandem Mass Spectrometry

  • Chae, Jung-Woo;Baek, In-Hwan;An, Jung-Hwa;Kim, Eun-Jung;Kwon, Kwang-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2163-2167
    • /
    • 2012
  • A rapid, specific, and reliable LC-MS/MS-based bioanalytical method was developed and validated in rat plasma for the simultaneous quantitation of amitriptyline and its metabolite nortriptyline. Chromatographic separation of these analytes was achieved on a Gemini C18 column ($50{\times}4.60mm$, $5{\mu}m$) using reversed-phase chromatography. The mobile phase was an isocratic solvent system consisting of 1% formic acid in water and methanol (10:90, v/v), at a flow rate of 0.2 mL/min. The analytical range was set as 0.1-500 ng/mL for amitriptyline and 0.08-500 ng/mL for nortriptyline using a $200{\mu}L$ plasma sample. The accuracy and precision of the assay were in accordance with FDA regulations for the validation of bioanalytical methods. The validated method was successfully applied to a pharmacokinetic study in six rats after oral administration of amitriptyline (15 mg/kg). This method allows laboratory scientists to rapidly determine amitriptyline and nortriptyline concentrations in plasma.

Combustion Stability Rating Test under Low Pressure Condition of a 75-$ton_f$ LRE Thrust Chamber (75톤급 액체로켓엔진 연소기의 저압 조건에서 수행된 연소안정성 시험)

  • Lee, Kwang-Jin;Kang, Dong-Hyuk;Lim, Mun-Ki;Ahn, Kyu-Bok;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.231-238
    • /
    • 2010
  • Combustion stability rating tests under condition low pressure of a 75-$ton_f$ liquid rocket engine(LRE) thrust chamber were carried out. Mixing head with decreased number of injectors than that of the other but with the same mass flow rate to the combustion chamber showed self-oscillation instability in chamber pressure of 30 bar. The other combustion chamber with increased number of injectors showed that high frequency combustion stability was maintained under condition of same pressure, but self-oscillation instability was generated in chamber pressure of 20 bar which can be considered as stability boundary region of this mixing head.

  • PDF

A Study on Design and Combustion Characteristic of a $H_2O_2$/Kerosene Uni-Injector Rocket Engine (과산화수소/케로신 단일 인젝터 설계 및 혼합비에 따른 연소특성)

  • Kim, Bo-Yeon;Lee, Yang-Suk;Kim, Geun-Chul;Ko, Yung-Sung;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.81-84
    • /
    • 2010
  • In this study, a coaxial swirl injector using hydrogen peroxide and kerosene was designed and combustion performance tests were performed to evaluate combustion characteristic according to mixture ratio. Spray characteristic of the injector was verified by cold flow test and combustion performances according to mixture ratio were evaluated by the characteristic exhaust velocity. Test results showed that the combustion efficiency at the design condition was about 95% and the pressure fluctuation was very small.

  • PDF

Deterioration and Life Assessment of Rubber Elastomer on contact to Fuel-II (연료접촉 고무 탄성체의 열화 및 수명예측 연구-II)

  • Han, Jeong-sik;Jeong, Byoung-hun;Kim, Young-wun;Hong, Jinsook;Chung, Keunwoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.160-162
    • /
    • 2017
  • When rubber elastomer has contact with fuel, since the component and additive having low molecular weight can flow out, the physical properties of both elastomer and fuel could be hindered. In order to predict the life of the rubber elastomer, this study is to determine the change of weight, thickness, hardness, strain, and compression set as mechanical properties of the sealant rubber O-ring, which was dependent on volume, temperature, and storage time of the contacted fuel. We also determined purity of fuel via GC analysis and measured gross heat of combution. The results could be used as a reference to evaluate the life of the rubber elastomer.

  • PDF