• Title/Summary/Keyword: liquid film thickness

Search Result 217, Processing Time 0.022 seconds

A Visualization Study of Liquid Spreading on Micro/nano Textured Surfaces with Synchrotron X-ray Imaging (방사광 X-선 영상법을 활용한 마이크로/나노 구조 표면에서의 액체 퍼짐 가시화 연구)

  • Kwak, Ho Jae;Yu, Dong In;Doh, Seungwoo;Park, Hyun Sun;Kim, Moo Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.8
    • /
    • pp.531-536
    • /
    • 2017
  • Nano/micro technology is currently applied to improve solid surface wettability, with recent research studies indicating that nanostructures can improve surface wettability in the hydrophilic direction, and liquid spreading (propagation) is generated by capillary wicking. The majority of the existing research involves qualitative analysis of the spreading phenomena, owing to the difficulty in conducting small-scale analysis (nanostructures). In this study, the droplet interfacial behavior on silicon surfaces with micro/nano/micro-nano structures is experimentally investigated. The interfacial behavior is directly visualized using synchrotron X-ray imaging (side view). The spreading phenomena occur on structured surfaces, and the liquid interface behaviors on the surfaces differ. The liquid film thickness is uniform during spreading on the microstructured surface, but not on the nano case which shows a gentle slope. These combined spreading shapes were observed on a micro-nano structured surface, and liquid propagation was enhanced when the micro- and nano-structures are combined.

Ferroelectric and Structural Properties of Nd-substituted $Bi_4Ti_3O_{12}$ Thin Films Fabricated by MOCVD

  • Kang, Dong-Kyun;Park, Won-Tae;Kim, Byong-Ho
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.10a
    • /
    • pp.166-169
    • /
    • 2006
  • A promising capacitor, which has conformable step coverage and good uniformity of thickness and composition, is needed to manufacture high-density non-volatile FeRAM capacitors with a stacked cell structure. In this study, ferroelectric $Bi_{3.61}Nd_{0.39}Ti_3O_{12}$ (BNT) thin films were prepared on $Pt(111)/Ti/SiO_2/Si$ substrates by the liquid delivery system MOCVD method. In these experiments, $Bi(ph)_3$, $Nd(TMHD)_3$ and $Ti(O^iPr)_2(TMHD)_2$ were used as the precursors and were dissolved in n-butyl acetate. The BNT thin films were deposited at a substrate temperature and reactor pressure of approximately $600^{\circ}C$ and 4.8 Torr, respectively. The microstructure of the layered perovskite phase was observed by XRD and SEM. The remanent polarization value (2Pr) of the BNT thin film was $31.67\;{\mu}C/cm^2$ at an applied voltage of 5 V.

  • PDF

A Study on the Optimum Bonding Preparation Condition of Single Crystal Superalloy (단결정 초내열합금의 재결정 방지를 위한 접합 전처리 조건에 관한 연구)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.19 no.2
    • /
    • pp.191-199
    • /
    • 2001
  • The oxidation and recrystallization behaviors of Ni-base single crystal superalloy, CMSX-2 were investigated to determine the condition of the preparation for transient liquid phase (TLP) bonding operations. The faying surfaces of CMSX-2 were worked by the shot peening, fine cutting and mechanical polishing treatments and the degree of working of treated surfaces was evaluated by the hardness test and X-ray diffraction method CMSX-2 was heat-treated at 1,173∼1.589k for 3.6ks in vacuum of 4mPa. The mechanically polished surface was slightly oxidized after heat treatment even in the vacuum atmosphere of 4mPa. The thickness of an oxide film increased with increasing the heating temperature and the surface roughness of the faying surface. Recrystallization occurred at the surface after heat treatment at above 1,423K when the hardness was increased more than Hv600 by the shot peening treatment while the mechanically polished or fine cut surfaces didn't recrystallized. Based on these results, it was clearfied that the mechanically polishing with fine abrasive grit could be used for the preparation of faying surface of CMSX-2 before bonding operation.

  • PDF

Study on The Anti-Shock Performance Evaluation of TFT-LCD module for Mobile IT Devices (이동형 정보통신 기기용 화면표시 장치의 내충격 평가 방법 연구)

  • Kim Byung-Sun;Kim Jung-Woo;Lee Dock-Jin;Choi Jae-Boong;Kim Young-Jin;Baik Seung-Hyun;Chu Young-Bee;Koo Ja-Choon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.130-137
    • /
    • 2006
  • TFT-LCD(Thin Film Transistor Liquid Crystal Display) module is representative commercial product of FPD(Flat Panel Display). Thickness of TFT-LCD module is very thin. It is adopted for major display unit for IT devices such as Cellular Phone, Camcorder, Digital camera and etc. Due to the harsh user environment of mobile IT devices, it requires complicated structure and tight assembly. And user requirements for the mechanical functionalities of TFT-LCD module become more strict. However, TFT-LCD module is normally weak to high level transient mechanical shock. Since it uses thin crystallized panel. Therefore, anti-shock performance is classified as one of the most important design specifications. Traditionally, the product reliability against mechanical shock is confirmed by empirical method in the design-prototype-drop/impact test-redesign paradigm. The method is time-consuming and expensive process. It lacks scientific insight and quantitative evaluation. In this article, a systematic design evaluation of TFT-LCD module for mobile IT devices is presented with combinations of FEA and testing to support the optimal shock proof display design procedure.

Sputtered ZTO as a blocking layer at conducting glass and $TiO_2$ Interfaces in Dye-Sensitized Solar Cells (GZO/ZTO 투명전극을 이용한 DSSC의 광전 변환 효율 특성)

  • Park, Jaeho;Lee, Kyungju;Song, Sangwoo;Jo, Seulki;Moon, Byungmoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.53.2-53.2
    • /
    • 2011
  • Dye-sensitized solar cells(DSSCs) have been recognized as an alternative to the conventional p-n junction solar cells because of their simple fabrication process, low production cost, and transparency. A typical DSSC consists of a transparent conductive oxide (TCO) electrode, a dye-sensitized oxide semiconductor nanoparticle layer, liquid redox electrolyte, and a Pt-counter electrode. In dye-sensitized solar cells, charge recombination processes at interfaces between coducting glass, $TiO_2$, dye, and electrolyte play an important role in limiting the photon-to-electron conversion efficiency. A layer of ZTO thin film less than ~200nm in thickness, as a blocking layer, was deposited by DC magnetron sputtering method directly onto the anode electrode to be isolated from the electrolyte in dye-sensitized solar cells(DSCs). This is to prevent the electrons from back-transferring from the electrode to the electrolyte ($I^-/I_3^-$). The presented DSCs were fabricated with working electrode of Ga-doped ZnO glass coated with blocking ZTO layer, dye-attached nanoporous $TiO_2$ layer, gel electrolyte and counter electrode of Pt-deposited GZO glass. The effects of blocking layer were studied with respect to impedance and conversion efficiency of the cells.

  • PDF

Interfacial shear stresses and friction factors in nearly-horizontal countercurrent stratified two-phase flow (근사수평 반류성층 2상유동에서의 계면전단응력 및 마찰계수)

  • 이상천;이원석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.116-122
    • /
    • 1988
  • Interfacial shear stresses have been determined for countercurrent stratified flow of air and water in a nearly-horizontal rectangular channel, based upon measurements of pressure drop, gas velocity profiles and mean film thickness. A dimensionless correlation for the interfacial friction factor has been developed as a function of the gas and liquid Reynolds numbers. Equivalent surface roughnesses for the interfacial friction factor have been calculated using the Nikuradse correlation and have been compared with the intensity of the wave height fluctuation on the interface. The results show that the interfacial shear stress is mainly affected by turbulent mixing near the interface due to the wave motion rather than by the roughened surface.

Effect of discharge power on the electrical properties of ZnO:Al transparent conducting films by RF magnetron sputtering (RF 마그네트론 스퍼터법에 의한 ZnO:Al 투명전도막 특성에 미치는 방전전력의 영향)

  • Lee, Sung-Wook;Kim, Byung-Sub;Lee, Soo-Ho;Lim, Dong-Gun;Park, Min-Woo;Lee, Se-Jong;Kwak, Dong-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.939-942
    • /
    • 2004
  • Al doped Zinc Oxide(ZnO:Al) films, which is widely used as a transparent conductor in optoelectronic devices such as solar cell, liquid crystal display, plasma display panel, thermal heater, and other sensors were Prepared by using the capacitively coupled RF magnetron sputtering method. In this paper the effect of RF discharge power on the electrical, optical and structural properties were investigated experimentally. The results show that the structural and electrical properties of the film are highly affected by the variation of RF discharge power. The optimum growth conditions were obtained for films doped with 2 wt% of $Al_2O_3$ and 200 W in RF discharge power, which exhibit a resistivity of $10.4{\times}10^{-4}{\Omega}-cm$ associated with a transmittance of 89.66 % for 1000nm in films thickness in the wavelength range of the visible spectrum.

  • PDF

Effect of Sr/Ta mole ratio on the ferroelectric properties of SBT thin films fabricated by LSMCD process (LSMCD 공정으로 제조한 SBT 박막의 Sr/Ta 몰비에 따른 강유전 특성)

  • 박주동;김지웅;오태성
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.360-366
    • /
    • 2000
  • $Sr_xBi_{2.4}Ta_2O_9$ (SBT) thin films of 150 nm thickness were prepared using LSMCD (Liquid Source Misted Chemical Deposition) process with variation of the Sr/Ta mole ratio of 0.35~0.65, and their crystalline phase, microstructure, ferroelectric properties and leakage current characteristics were investigated. Ferroelectric characteristics of the LSMCD-derived SBT films were optimized at the Sr/Ta moleratio of 0.425. The remanent polarization (2Pr) and coercive field (Ec) of the SBT film with the Sr/Ta mole ratio of 0.425 were measured as 15.01 $\mu$C/$ \textrm{cm}^2$ and 41 kV/cm at an applied voltage of $\pm$5 V respectively. LSMCD-derived SBT films with the Sr/Ta mole ratio of 0.35~0.5 exhibited leakage current densities lower than $10^{-5} A/\textrm{cm}^2$ at an applied field of 100 kV/cm, and excellent fatigue-free characteristics of the remanent polarization decrement less than 1% after $10^{10}$ switching cycles at$\pm$5 V.

  • PDF

Au Catalyst Free and Effect of Ga-doped ZnO Seed Layer on Structural Properties of ZnO Nanowire Arrays

  • Yer, In-Hyung;Roh, Ji-Hyoung;Shin, Ju-Hong;Park, Jae-Ho;Jo, Seul-Ki;Park, On-Jeon;Moon, Byung-Moo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.354-354
    • /
    • 2012
  • In this study, we report the vertically aligned ZnO nanowires by using different type of Ga-doped ZnO (GZO) thin films as seed layers to investigate how the underlying GZO film micro structure affects the distribution of ZnO nanowires. Arrays of highly ordered ZnO nanowires have been synthesized on GZO thin film seed layer prepared on p-Si substrates ($7-13{\Omega}cm$) with utilize of a pulsed laser deposition (PLD). With the vapor-liquid-solid (VLS) growth process, the ZnO nanowire synthesis carries out no metal catalyst and is cost-effective; furthermore, The GZO seed layer facilitates the uniform growth of well-aligned ZnO nanowires. The influence of the growth temperature and various thickness of GZO seed layer have been analyzed. Crystallinity of grown seed layer was studied by X-Ray diffraction (XRD); diameter and morphology of ZnO nanowires on seed layer were investigated by field emission scanning electron microscopy (FE-SEM). Our results suggest that the GZO seed layer with high c-axis orientation, good crystallinity, and less lattice mismatch is key parameters to optimize the growth of well-aligned ZnO nanowire arrays.

  • PDF

Fabrication of a Nano-Wire Grid Polarizer for Brightness Enhancement in TFT-LCD Display (TFT-LCD용 휘도 성능을 향상시키는 나노 와이어 그리드 편광 필름의 제작)

  • Huh, Jong-Wook;Nam, Su-Yong
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.29 no.3
    • /
    • pp.105-124
    • /
    • 2011
  • TFT-LCD consists of LCD panel on the top, circuit unit on the side and BLU on the bottom. The recent development issues of BLU-dependent TFT-LCD have been power consumption minimization, slimmerization and size maximization. As a result of this trend, LED is adopted as BLU instead of CCFL to increase brightness and to reduce thickness. In liquid crystal displays, the light efficiency is below 10% due to the loss of light in the path from a light source to an LCD panel and presence of absorptive polarizer. This low efficiency results in low brightness and high power consumption. One way to circumvent this situation is to use a reflective polarizer between backlight units and LCD panels. Since a nano-wire grid polarizer has been known as a reflective polarizer, an idea was proposed that it can be used for the enhancement of the brightness of LCD. The use of reflective polarizing film is increasing as edge type LED TV and 3D TV markets are growing. This study has been carried out to fabrication of the nano-wire grid polarizer(NWGP) and investigated the brightness enhancement of LCD through polarization recycling by placing a NWGP between an c and a backlight unit. NWGPs with a pitch of 200nm were fabricated using laser interference lithography and aluminum sputtering and wet etching. And The NWGP fabrication process was using by the UV imprinting and was applied to plastic PET film. In this case, the brightness of an LCD with NWGPs was 1.21 times higher than that without NWGPs due to polarization recycling.