• 제목/요약/키워드: liquid expansion

Search Result 255, Processing Time 0.024 seconds

Stress Analyses of the Gimbal Bellows for a Lox Pipe (산화제 배관 김발 주름관 응력 해석)

  • Yoo, Jae-Han;Moon, Il-Yoon;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.477-480
    • /
    • 2011
  • The stress analyses of the 'U'-shaped multi-ply reinforced gimbal bellows under high pressure and rotational displacement loadings are performed at the room and cryogenic temperatures. The bellows are used for the Lox pipe line which connects the combustion chamber with the turbopump of a liquid rocket engine. The distributions of the stress, the strains and the contact pressures are obtained from the finite element analysis considering the geometric non-linearities of the contacts between the plies and the material one of the isotropic plasticity. Those are compared with the stress results from EJMA (Expansion Joint Manufacturing Association) standard. Also, the effects of the operating temperature and the reinforcing ring on the stresses are investigated.

  • PDF

Chemical Equilbrium Analysis of the $30\;ton_f$ - class KARI LRE Nozzle Flow (KARI 30톤급 액체 로켓 엔진 노즐 유동 화학 평형 해석)

  • Lee, Dae-Sung;Kang, Ki-Ha;Cho, D.R.;Choi, Jeong-Yeol;Choi, H.S.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.9-15
    • /
    • 2008
  • Nozzle flow analyses of $30\;ton_f$-class KARI liquid rocket engine for high altitude propulsion are carried out using a chemically frozen and equilibrium flow analysis code developed previously. It is considered that the combined frozen- and shifting- equilibrium analysis is cost-effective regarding the convergence characteristics and modeling uncertainties, though the non-equilibrium analysis is most reliable approach. A dependable performance prediction could be attainable through the present analyses that account for the recombination process and thermal and kinetic energy recovery during the expansion process with viscous effects.

Labyrinth Seal Design for Preventing Internal Inflow of Plating Solution (도금액의 내부 유입 방지를 위한 래버린스 시일 설계)

  • Lee, Duck-Gyu;Kim, Wan-Doo
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.256-262
    • /
    • 2017
  • Molten zinc plating is a process in which zinc is thinly coated over a metallic or non-metallic surface. It is used in various industrial fields for corrosion resistance and decoration. During the process, a steel sheet is passed through a roll that rotates inside the molten zinc liquid in the temperature range of $460^{\circ}C$ to $680^{\circ}C$, and the plating liquid flows into the roll causing abrasion and erosion of the roll surface. This problem is known to accelerate the replacement cycle of the roll and cause considerable economic loss owing to production line stoppage. Here, we propose a mechanism that operates at high temperature and pressure with a labyrinth type seal design to resolve this problem. We theoretically investigate the flow of the plating solution inside the seal and compute the minimum rotation speed required to prevent the plating solution from entering the seal chamber. In addition, we calculate the thermal deformation of the seal during operation and display thermally deformed dimensions at high temperatures. To verify the theoretical results, we perform experiments using pilot test equipment working in the actual plating environment. The experimental results are in good agreement with theoretical results. We expect our results to contribute towards the extension of the roll's life span and thereby reduce the economic losses.

Probing of Microscale Phase-Change Phenomena Based on Michelson Interforometry (Michelson 간섭계를 응용한 미세 상변화 현상 계측)

  • Kim, Dong-Sik;Park, Hui-Gwon;Grigoropoulos, Costas-P.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1140-1147
    • /
    • 2001
  • Experimental schemes that enable characterization of phase-change phenomena in the microscale regime are essential for understanding the phase-change kinetics. Particularly, monitoring rapid vaporization on a submicron length scale is an important yet challenging task in a variety of laser-processing application, including steam laser cleaning and liquid-assisted material ablation. This paper introduces a novel technique based on Michelson interferometry for probing the liquid-vaporization process on a solid surface heated by a KrF excimer laser pulse(λ=248nm, FWHM=24ns) in water. The effective thickness of a microbubble layer has been measured with nanosecond time resolution. The maximum bubble size and growth rate are estimated to be of the order of 0.1㎛ and 1m/s, respectively. The results show that the acoustic enhancement in the laser induced vaporization process is caused by bubble expansion in the initial growth stage, not by bubble collapse. This work demonstrates that the interference method is effective for detecting bubble nucleation and microscale vaporization kinetics.

Rotor leading edge thickness effect on supersonic impulse turbine performance (초음속 충동형 터빈의 로터 전익 두께가 성능 변화에 미치는 영향)

  • Lee, Hang-Gi;Jung, Eun-Hwan;Park, Pyun-Gu;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.149-152
    • /
    • 2010
  • It was investigated that effect of the supersonic impulse turbine rotor leading edge thickness which was the part of 75 ton open cycle liquid rocket engine turbopump. The test for turbine was performed that the rotor thickness to pitch ratio was 1.9 and 1.4 to 30 ton turbine. As a result of test, the rotor with lower thickness(1.4) had 1.5% efficiency gain to the higher thickness(1.9) and the pressure ratio with maximum efficiency was increased to the nozzle full expansion point.

  • PDF

Comparative Study on the Performance of Small Satellites Launch Vehicle Employing ElecPump Cycle Upper Stage Engine (전기펌프 사이클 상단 엔진을 적용한 소형발사체 성능 비교연구)

  • Yu, Byungil;Kwak, Hyun-Duck;Kim, Hongjip
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.107-121
    • /
    • 2020
  • The performance analysis of the small satellites launch vehicle using the electric pump cycle as the upper stage engines was performed. The first stage is the launch vehicle that uses the test launch vehicle of the Korea Space Launch Vehicle II and the second stage employs elecpump cycle engine that uses liquid methane and kerosene (RP-1) as fuel. A model for the mass estimation was presented and the analysis was conducted for the range of thrust of 20 to 40 kN and combustion pressure of 3 to 6 MPa with a nozzle expansion ratio of 60 to 100. The mixture ratio with the maximum velocity increment was calculated and the performance of the LEO and SSO payload were calculated from the stage mass estimation. In both the cases, liquid methane, and RP-1 showed maximum payload for 20 kN thrust, 3 MPa combustion pressure, and the nozzle expansion ratio of 100, with a mixture ratio of 3.49 for liquid methane and 2.75 for RP-1. In addition, the ditching points of the first stage and the fairing in the LEO mission were analyzed using ASTOS.

An Optimization Study on the NGL Recovery Process Using Turbo-expander (터보 팽창기를 활용한 NGL 회수공정 최적화에 대한 연구)

  • Kim, Yu-Mi;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1473-1478
    • /
    • 2011
  • In this study, simulation and optimization works for a demethanizer column have been performed to obtain ethane and heavier products from a pretreated natural gas stream. Pretreated natural gas feed stream is partially condensed after being precooled by exchanging heat with demethanizer top vapor stream and by using an external refrigeration cycle with a propane refrigerant. Vapor stream is furtherly cooled and partially condensed through a turbo-expander and the power generated from the expansion of turbo-expander was delivered to the compressor for the residue gas compression. Liquid stream is being cooled by Joule-Thomson expansion valve and is fed to the middle section of the demethanizer. Ethane recovery percent for feed natural gas was set to 75% and methane to ethane molar ratio was fixed as 0.015. Propane refrigeration heat duty was reduced by splitting the feed stream and to exchange heat with side reboiler.

A Study on the Minimization of the Refrigeration Power Consumptions Through the Determination of Demethanizer Top Pressure in the NGL Recovery Process Using Turbo-expander (터보 팽창기를 활용한 NGL 회수공정에서 최적의 탈메탄탑의 운전압력 결정을 통한 냉동 소요동력 최소화에 대한 연구)

  • Kim, Yu-Mi;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.1032-1037
    • /
    • 2011
  • In this study, simulation and optimization works for a demethanizer column have been performed to obtain ethane and heavier products from a pretreated natural gas stream. Pretreated natural gas feed stream was partially condensed after being precooled by exchanging heat with demethanizer top vapor stream and by using an external refrigeration cycle with a propane refrigerant. Vapor stream was cooled further and partially condensed through a turbo-expander. The power generated from the expansion of turbo-expander was delivered to the compressor for the residue gas compression. Liquid stream was cooled by Joule-Thomson expansion valve and was fed to the middle section of the demethanizer. Recovery percent of ethane for feed natural was set to 80% and methane to ethane molar ratio was fixed as 0.0119. On the other hand, some of the cold heat could be recovered by splitting the feed stream and by exchanging heat with side reboiler in order to reduce the heat duty in the propane refrigeration cycle.

Application of Open-type Liquid Culture for Large-scale Production of Mature Plus Tree of Eucalyptus pellita (개방형 액체대량배양 시스템을 통한 유칼리나무 펠리타 선발목의 대량증식)

  • Park, So-Young;Moon, Heung-Kyu;Kim, Yong-Wook;Kim, Seon-Ja;Yi, Jae-Seon
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.6
    • /
    • pp.650-655
    • /
    • 2008
  • In an attempt to establish the mass proliferation system, Eucalyptus pellita, a 5-year-old plus tree, was cultured with three different culture types in 1L vessels: solid culture without ventilation (conventional culture), liquid culture without ventilation and open-type liquid culture with forced ventilation. Then the culture scale was subsequently increased from 1L to 10L in vessel volume. After 4 weeks of 1L-scale culture, the best growth was obtained by culturing plantlets on open-type liquid culture, suggesting that the in vitro plantlets growth can be enhanced by liquid medium and ventilation. In open-type large scale culture in 10L vessel, plantlets growth resulted in a 370% increase in the number of nodes, 3.6 times increase in leaf expansion, and 3.3 times increase in shoot length, while the conventional culture suppressed shoot growth due to the callusing on the leaves and lack of $CO_2$. The results indicated that the open-type large scale culture system was effective for enhancing productivity by improving growth of the plantlets in clonally proliferated plus tree, Eucalyptus pellita.

Experimental Study on the Physical and Mechanical Properties of a Copper Alloy for Liquid Rocket Combustion Chamber Application (액체로켓 연소기용 구리합금의 열/기계적 특성에 관한 실험적 연구)

  • Ryu, Chul-Sung;Baek, Un-Bong;Choi, Hwan-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1494-1501
    • /
    • 2006
  • Mechanical and physical properties of a copper alloy for a liquid rocket engine(LRE) combustion chamber liner application were tested at various temperatures. All test specimens were heat treated with the condition they might experience during actual fabrication process of the LRE combustion chamber. Physical properties measured include thermal conductivity, specific heat and thermal expansion data. Uniaxial tension tests were preformed to get mechanical properties at several temperatures ranging from room temperature to 600$^{\circ}C$. The result demonstrated that yield stress and ultimate tensile stress of the copper alloy decreases considerably and strain hardening increases as the result of the heat treatment. Since the LRE combustion chamber operates at higher temperature over 400$^{\circ}C$, the copper alloy can exhibit time-dependent behavior. Strain rate, creep and stress relaxation tests were performed to check the time-dependent behavior of the copper alloy. Strain rate tests revealed that strain rate effect is negligible up to 400$^{\circ}C$ while stress-strain curve is changed at 500$^{\circ}C$ as the strain rate is changed. Creep tests were conducted at 250$^{\circ}C$ and 500$^{\circ}C$ and the secondary creep rate was found to be very small at both temperatures implying that creep effect is negligible for the combustion chamber liner because its operating time is quite short.