• Title/Summary/Keyword: liquid depth

Search Result 298, Processing Time 0.025 seconds

Dissolution Characteristics of Liquid Carbon Dioxide Injected at the Intermediate Depth of the Ocean

  • Namjin Kim, Jaeyong-Lee;Byungki Hur;Taebeom Seo;Kim, Chongbo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.11
    • /
    • pp.1276-1285
    • /
    • 2000
  • The solubility, the surface concentration and the dissolution behavior of carbon dioxide in deep sea were numerically investigated. Base on the calculations the relations between the surface concentration of liquid carbon dioxide droplet with the hydrate film and the solubility and those between the ambient carbon dioxide concentration in the plume and the dissolution rate were obtained. The result show that a carbon dioxide droplet is released both at 1000 m in depth with the initial droplet diameter of 0.011 m or less and at 1500 m in depth with a diameter of 0.015 m or less, and the droplet is completely dissolved below 500 m in depth. The hydrate film acts as a resistant layer for the dissolution of liquid carbon dioxide, and the effect of the hydrate film on the dissolution of liquid carbon dioxide depended upon the depth.

  • PDF

Dissolution Characteristics of Liquid $CO_2$ Injected at the Intermediate Depth of the Ocean (중층심해에 분사된 액체 이산화탄소의 용해특성)

  • Kim, N.J.;Lee, J.Y.;Seo, T.B.;Kim, C.B.
    • Solar Energy
    • /
    • v.20 no.2
    • /
    • pp.75-84
    • /
    • 2000
  • Global wanning induced by greenhouse gases such as carbon dioxide is a serious problem for mankind. Carbon dioxide ocean disposal is one of the promising options to reduce carbon dioxide concentration in the atmosphere because the ocean has vast capacity for carbon dioxide sequestration. However, the dissolution rate of liquid carbon dioxide in seawater must be known in advance in order to estimate the amount of carbon dioxide sequestration in the ocean. Therefore, the solubility, the surface concentration, the droplet size and other factors of liquid carbon dioxide at various depths are calculated. The results show that liquid carbon dioxide changes to carbon dioxide bubble around 500 m in depth, and the droplet is completely dissolved below 500 m in depth if carbon dioxide droplet is released both at 1000 m in depth with the initial droplet diameter of 0.011 m or less and at 1500 m in depth with the diameter of 0.015 m or less. In addition, the hydrate film acts as a resistant layer for the dissolution of liquid carbon dioxide. The surface concentration of carbon dioxide droplet with the hydrate film is about 50% at 1500 m in depth and about 60% at 1000 m in depth of the carbon dioxide solubility. Also, the ambient carbon dioxide concentration in the plume is an another crucial parameter for complete dissolution at the intermediate ocean depth, and the injection of liquid carbon dioxide from a moving ship is more effective than that from a fixed pipeline.

  • PDF

Seismic reliability of concrete rectangular liquid-storage structures

  • Cheng, Xuansheng;He, Peicun;Yu, Dongjiang
    • Structural Engineering and Mechanics
    • /
    • v.70 no.5
    • /
    • pp.563-570
    • /
    • 2019
  • To analyze the seismic reliability of concrete rectangular liquid storage structures (CRLSSs), assuming that the wall thickness and internal liquid depth of CRLSSs are random variables, calculation models of CRLSSs are established by using the Monte Carlo finite element method (FEM). The principal stresses of the over-ground and buried CRLSSs are calculated under three rare fortification intensities, and the failure probabilities of CRLSSs are obtained. The results show that the seismic reliability increases with the increase of wall thickness, whereas it decreases with the increase of liquid depth. Between the two random factors, the seismic reliability of CRLSSs is more sensitive to the change in wall thickness. Compared with the over-ground CRLSS, the buried CRLSS has better reliability.

Capillary Flow in Different Cells of Thuja orientalis, Gmelina arborea, Phellodendron amurense

  • Chun, Su Kyoung
    • Journal of the Korea Furniture Society
    • /
    • v.28 no.3
    • /
    • pp.248-258
    • /
    • 2017
  • A study was carried out to observe the 1% aqueous safranine solution flow speed in longitudinal and radial directions of softwood Thuja orientalis L., diffuse-porous wood Gmelina arborea Roxb., and ring-porous wood Phellodendron amurense Rupr., Longitudinal flow was considered from bottom to top while the radial flow was considered from bark to pith directions. In radial direction, ray cells and in longitudinal direction tracheids, vessel and wood fiber were considered for the measurement of liquid penetration speed at less than 12% moisture contents(MC). The variation of penetration speed for different species was observed and the reasons behind for this variation were explored. The highest radial penetration depth was found in ray parenchyma of T. orientalis but the lowest one was found in ray parenchyma of P. amurense. The average liquid penetration depth in longitudinal trachied of T. orientalis was found the highest among all the other cells. The penetration depth in fiber of G. arborea was found the lowest among the other longitudinal cells. It was found that cell dimension and also meniscus angle of safranine solution with cell walls were the prime factors for the variation of liquid flow speed in wood. Vessel was found to facilitate prime role in longitudinal penetration for hardwood species. The penetration depth in vessel of G. arborea was found highest among all vessels. Anatomical features like ray parenchyma cell length and diameter, end-wall pits number were found also responsible fluid flow differences. Initially liquid penetration speed was high and the nit gradually decreased in an uneven rate. Liquid flow was captured via video and the penetration depths in those cells were measured. It was found that even in presence of abundant rays in hardwood species, penetration depth of liquid in radial direction of softwood species was found high. Herein the ray length, lumen area, end wall pit diameter determined the radial permeability. On the other hand, vessel and fiber structure affected the longitudinal flow of liquids. Following a go-stop-go cycle, the penetration speed of a liquid decreased over time.

An Analytic Solution to Sloshing Natural Periods for a Prismatic Liquid Cargo Tank with Baffles (내부재가 설치된 직육면체 화물창 내의 Sloshing 고유주기 산정)

  • Shin, Jang-Ryong;Choi, Kyung-Sik;Kang, Sin-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.16-21
    • /
    • 2005
  • In the design of super tankers or LNG carriers, which transport a large amount of liquid in the cargo tanks, the structural d11mage due to liquid sloshing is an important problem. The impact pressure from sloshing is most violent when the liquid motion of a partially filled tank is in resonance with the motion of a ship. In this study, the sloshing natural periods of a baffled tank, often installed to reduce liquid motion, is analyzed. A variational method is adopted to estimate the sloshing natural periods for a prismatic cargo tank with baffles of arbitrary filling depth of liquid; the results are compared with Lloyd's Register regulations on sloshing periods. In this study, using an effective liquid-fill-depth concept, sloshing periods for a baffled tank can be expressed by the same form as rectangular prismatic tanks without baffles. In contrast to Lloyd's Register regulations, which can be applicable only to cargo tanks with constant baffle size and distribution, the present results can be applicable to cases of variable baffle size and distribution.

Simulation Model for Dissolution of Liquid $CO_2$ Discharged at Intermediate Depth of Ocean (중층심해에 분사된 액체 이산화탄소 용해 예측모델 개발)

  • 김남진;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.9
    • /
    • pp.718-726
    • /
    • 2003
  • Carbon dioxide ocean disposal is one of the promising options to reduce carbon dioxide concentration in the atmosphere because the ocean has vast capacity for carbon dioxide sequestration. However, the dissolution rate of liquid carbon dioxide in seawater must be known in advance in order to estimate the amount of carbon dioxide sequestration in the ocean. Therefore, in the present study, calculations of the solubility, the surface concentration and the dissolution behavior of carbon dioxide when liquid carbon dioxide is released at 1,000m and 1,500m in depth are peformed. The results show that the droplet is completely dissolved below 500 m in depth if the carbon dioxide droplet is released both at 1,000m in depth with the initial droplet diameter of 0.011m or less and at 1,500m in depth with the diameter of 0.016 or less. Also, the surface concentration of carbon dioxide droplet with the hydrate film is about 50% of carbon dioxide solubility at 1,500 m in depth and about 60% of carbon dioxide solubility at 1,000 m in depth.

Depth Cartridge Filter for Industrial Liquid Filtration (산업용 심층여과 카트리지 필터)

  • Nam, Sang-Yong;Shim, Hong-Seop;Lee, Young-Moo;Choi, Yeong-Og
    • Membrane Journal
    • /
    • v.19 no.3
    • /
    • pp.173-182
    • /
    • 2009
  • Depth cartridge filters are widely used in various kinds of manufacturing process of industrial fields. This study focused on the explanation of depth and surface filtration mechanism, manufacture process and also survey its major company and market trend. Furthermore, the failure mode and major factor which can be occurred in use, and the reliability test of liquid cartridge filter were studied.

A Numerical Study on Refrigerant Distribution according to the Insertion Depth of the Distributor-Outlet Pipes in an Air-Conditioning System (공조 시스템 내의 분배기 출구관의 삽입깊이에 따른 유량분포연구)

  • Lee, Hee Won;Park, Il Seouk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.9
    • /
    • pp.491-496
    • /
    • 2015
  • Generally, the phase of the refrigerants that circulate in air-conditioning systems is repeatedly changed from liquid to gas and from gas to liquid. In vapor-compression refrigeration, the refrigerant at the inlet of the evaporator is in a gas-liquid two-phase state; therefore, to enhance the heat-transfer performance of the evaporator, the even distribution of the refrigerant across multiple passages of the evaporator is essential. Unlike the distribution of a single-phase refrigerant, multi-phase distribution requires further considerations. It is known that the multi-phase distribution at the outlet of the distributor is affected by factors such as the operating condition, the distributor's shape, and the insertion depth of the outlet pipes; here, the insertion depth of the outlet pipes is especially significant. In this study, for a cylindrical distributor with a 90-degree bend entrance and three outlet pipes, the flow uniformity at the outlet pipes was numerically tested in relation to variations of the insertion depth of the outlet pipes.

RGB-Depth Camera for Dynamic Measurement of Liquid Sloshing (RGB-Depth 카메라를 활용한 유체 표면의 거동 계측분석)

  • Kim, Junhee;Yoo, Sae-Woung;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.29-35
    • /
    • 2019
  • In this paper, a low-cost dynamic measurement system using the RGB-depth camera, Microsoft $Kinect^{(R)}$ v2, is proposed for measuring time-varying free surface motion of liquid dampers used in building vibration mitigation. Various experimental studies are conducted consecutively: performance evaluation and validation of the $Kinect^{(R)}$ v2, real-time monitoring using the $Kinect^{(R)}$ v2 SDK(software development kits), point cloud acquisition of liquid free surface in the 3D space, comparison with the existing video sensing technology. Utilizing the proposed $Kinect^{(R)}$ v2-based measurement system in this study, dynamic behavior of liquid in a laboratory-scaled small tank under a wide frequency range of input excitation is experimentally analyzed.

Regulation of depth and composition of airway surface liquid

  • J. H. Widdicombe;S. J. Bastacky;D. X.Y. Wu;Lee, C. Y.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.119-130
    • /
    • 1996
  • We review the factors which regulate the depth and composition of the human airway surface liquid (ASL). These include secretion from airway submucosal glands, ion and fluid transport across the surface epithelium, goblet cell discharge, surface tension and transepithelial gradients in osmotic and hydrostatic pressure. We describe recent experiments in which we have used low temperature scanning electron microscopy of rapidly frozen specimens to detect changes in depth of ASL in response to submucosal gland stimulation. We also present preliminary data in which X-ray microanalysis of frozen specimens has been used to determine the elemental composition of ASL.

  • PDF