• Title/Summary/Keyword: liquid crystalline polymers

Search Result 90, Processing Time 0.027 seconds

Dynamic Behavior of Photoinduced Birefringence of Copolymers Containing Aminonitro Azobenzene Chromophore in the Side Chain

  • 최동훈;강석훈
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.10
    • /
    • pp.1186-1194
    • /
    • 1999
  • Photoresponsive side chain polymers containing aminonitro azobenzene were synthesized for studying optically induced birefringence. Four different copolymers were prepared using methacrylate, a-methylstyrene, and itaconate monomer. Two copolymers are totally amorphous and the other two are liquid crystalline in nature. Trans-to-cis photoisomerization was observed under the exposure of UV light with UV-VIS absorption spectroscopy. Reorientation of polar azobenzene molecules induced optical anisotropy under a linearly polarized light at 532 nm. The dynamic parameters of optically induced birefringence let us compare the effect of polymeric structure on the rate of growth and decay of the birefringence. Besides the effect of glass transition temperature on the dynamics of photoinduced birefringence, we focused our interests on the geometrical hindrance of polar azobenzene molecules and cooperative motion of environmental mesogenic molecules in the vicinity of polar azobenzene moiety.

Dynamics of Poly[oxy-1,4-phenyleneoxy-2-{6-(4-(4-butylphenylazo)phenoxy)hexyloxy}terephthaloyl] and Poly[oxy-1,4-phenyleneoxy-2-{10-(4-(4-butylphenylazo)phenoxy)decyloxy}terephthaloyl] Studied by $^{13}C$ CP-MAS NMR

  • 조경규;한옥희;진정일
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.2
    • /
    • pp.178-183
    • /
    • 1998
  • Carbon-13 CP-MAS NMR techniques were used to investigate dynamics of new combined type liquid crystalline polymers, poly[oxy-1,4-phenyleneoxy-2-{6-(4-(4-butylphenylazo)phenoxy)hexyloxy}terephthaloyl] and poly[oxy-1,4-phenyleneoxy-2-{10-(4-(4-butylphenylazo)phenoxy)decyloxy}terephthaloyl]. Noticeable mobility change of either aromatic groups or methylene groups is not detected between 25 ℃ and 82 ℃ from 13C spinlattice relaxation time in the rotating frame (T1ρ(C)) and contact time array experiments. However, line shape analysis shows the increase of mobility of methylene carbons in poly[oxy-1,4-phenyleneoxy-2-{6-(4-(4-butylphenylazo)phenoxy)hexyloxy}terephthaloyl] at higher temperature. The dynamics of side chanis does not seem to be affected in our experimental temperature range by the length of aliphatic chain which is connecting the side chain group to the main chain.

Dielectric Properties of Liquid Crystalline Polymers and $CaTiO_3-LaAlO_3$ Composites for Embedded Matching Capacitors (내장형 capacitor를 위한 LCP와 $CaTiO_3-LaAlO_3$ 복합재의 유전특성)

  • Kim, Jin-Cheol;Oh, Jun-Rok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.232-233
    • /
    • 2007
  • We manufactured Liquid Crystal Polymer (LCP) and (1-x)CaTiO3-xLaAlO3 (CT-LA) ceramic composites and investigated dielectric properties to use as embedded capacitor in printed circuit boards and replace LTCC substrate. The dielectric properties of these composites are varied with volume fraction of CT-LA and ratios of CT/LA. Dielectric constants are in the range of 3~15. In addition, we could get low TCC and High Q value that could not achieve in other ceramic-polymer composites. Especially, in composite with x=0.01 and 30 vol% CT-LA, the dieletric constant and Q-value are 10 and 200, respectively. And more TCC is $-28{\sim}300ppm/^{\circ}C$ in the temperature range of $-55{\sim}125^{\circ}C$. We think that this composites can be used high-Q substrate material like LTCC and embedded temperature compensation capacitor in printed circuit boards.

  • PDF

Thermotropic Liquid Crystalline Properties of (8-Cholesteryloxycarbonyl)heptanoated Polysaccharides ((8-콜레스테릴옥시카보닐)헵타노화 다당류들의 열방성 액정 특성)

  • Jeong Seung-Yong;Ma Yung-Dae
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.338-349
    • /
    • 2006
  • Fully or nearly fully(8-cholesteryloxycarbonyl)heptanoated polysaccharide derivatives were synthesized by reacting cellulose, amylose, chitosan, chitin, alginic acid, pullulan or amylopectin with (8-cholesteryloxycarbonyl)heptanoyl chloride (CH8C), and their thermotropic liquid crystalline behaviors were investigated. Like in the case of CH8C, all the polysaccharide derivatives formed monotropic cholesteric phases with left-handed helicoidal structures whose optical pitches $({\lambda_m}'s)$ decrease with increasing temperature. Amylopectin derivative also formed a monotropic cholesteric phase with lefthanded helicoidal structures but, in contrast with the other derivatives, did not display reflection colors over the full cholesteric range, suggesting that the helicoidal twisting power of the cholesteryl group highly depends on the branched structure in amylopectin. The thermal stability and degree of order in the mesophase, the magnitude of ${\lambda}_m$ at the same temperature, and the temperature dependence of the ${\lambda}_m$ observed for polysaccharide derivatives were entirely different from those reported for the polymers in which the cholesteryl groups are attached to flexible or semiflexible backbones through flexible spacers. The results were discussed in terms of the difference in the chemical structures of the main and side chains and flexibility of the main chain.

Thermotropic Liquid Crystalline Behavior of [4-{4'-(Nitrophenylazo)phenoxycarbonyl}]alkanoated Celluloses ([4-{4'-(니트로페닐아조)펜옥시카보닐}]알카노화 셀룰로오스들의 열방성 액정 거동)

  • Jeong, Seung-Yong;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.58-66
    • /
    • 2009
  • The thermotropic liquid crystalline behavior of the homologous series of cellulose tri[4-{4'-(nitrophenylazo) phenoxycarbonyl}] alkanoates (NACEn, n=2$\sim$8, 10, the number of methylene units in the spacer) have been investigated. All of the homologoues formed monotropic nematic phases. The isotropic-nematic transition temperature ($T_{iN}$) decreased when n is increased up to 7, but it became almost constant when n is more than 7. The plot of transition entropy at $T_{iN}$ against n had a sharp negative inflection at n=7. The sharp change at n=7 may be attributed to the difference in arrangement of the side groups. The melting temperature ($T_m$) and associated entropy change at $T_m$, in contrast with $T_{iN}$ and associated entropy change at $T_{iN}$, exhibited a distinct odd-even effect, suggesting that the average shape of the side chains in the crystalline phase is different from that in the nematic phase. The thermal stability and degree of order of the nematic phase observed for NACEn were significantly different from those reported for the homologous series of side-chain and combined type liquid crystal polymers bearing azobenzene or biphenyl units in the side chains. The results were discussed in terms of the differences in the chemical structure, the flexibility of the main chain, the mode of chemical linkage of the side group with the main chain, and the number of the mesogenic units per repeating unit.

Synthesis and Photopolymerization of Discotic Liquid Crystals Containing Hydrogen Bondings and Two Polymerizable Groups (두 종류의 중합기와 수소결합을 가지는 원반형 액정의 합성과 광중합)

  • Lee Jun-Hyup;Lee Seung-Jun;Jang Ji-Sun;Jho Jae-Young
    • Polymer(Korea)
    • /
    • v.30 no.5
    • /
    • pp.373-379
    • /
    • 2006
  • Polymerizable discotic liquid crystals containing diacetylene and acryloyl groups were formed through hydrogen bonding between phloroglucinol core and polymerizable pyridine derivatives, and their photopolymerization behavior was investigated. The discotic complexes exhibited discotic columnar and rectangular columnar mesophases depending on the number of aromatic rings. Photopolymerization of the discotic complexes was carried out by UV irradiation in the liquid crystalline state. IR and UV-Vis spectroscopy affirmed that diacetylene and acryloyl groups were selectively Polymerized, and that crosslinked polymers containing short conjugated diacetylene oligomers were produced by 1,4-addition. X-ray diffraction experiment showed that the columnar order in the discotic complex containing phenyl-pyridine moiety was maintained after photopolymerization, and that the rectangular columnar order in he discotic Complex with biphenyl units was changed to the lamellar order.

Synthesis and Properties of Oxygen-bridged Aromatic Polyesters Based on Isomeric Naphthalenediols

  • Park, E-Joon;Park, Bong-Ku;Kim, Jae-Hoon;Lee, Sang-Chul;David J. T. Hill
    • Macromolecular Research
    • /
    • v.8 no.1
    • /
    • pp.12-18
    • /
    • 2000
  • Six aromatic polyesters with ether-linkages were prepared from 4,4'-oxybis(benzoic acid) and naphthalenediol (ND) isomers which were 1,4-, 1,5-, 1,6-, 2,3-, 2,6- and 2,7-derivatives. The solution viscosity numbers ranged from 0.23 to 0.65 dL/g. The glass transition temperatures ranged from 142 to 179$\^{C}$. The initial decomposition temperatures were all above 400$\^{C}$, and the residue weights at 600$\^{C}$ were in the range of 50-64%. Only the polyesters derived from 1,5- and 2,6-NDs, which have a linear linking mode, were found to be semicrystalline and could form thermotropically nematic phase. Multiple melting phenomena and annealing of the polyester derived from 1,5-ND and related polymers are described. The experimental results show that the polyester derived from 1,4-ND of linear shape was amorphous and non-liquid crystalline. Particularly, the polyester derived from 2,3-ND could form a smectic mesophase as banana-shaped molecules, and this is ascribed to the C/sub_2v/ symmetry where highly kinked molecules are packed in the same direction.

  • PDF

Thermotropic Liquid Crystalline Behavior of α,ω-Bis(4-nitroazobenzene-4'-carbonyloxy)alkanes (α,ω-비스(4-니트로아조벤젠-4'-카보닐옥시)알칸들의 열방성 액정 거동)

  • Jeong, Seung Yong;Hwang, Dong Jun;Ma, Yung Dae
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.230-237
    • /
    • 2010
  • A homologous series of linear liquid crystal dimers, ${\alpha},{\omega}$-bis(4-nitroazobenzene-4'-carbonyloxy)alkanes (NATWESn, n = 2~8, 10, the number of methylene units in the spacer) have been synthesized, and the thermal behavior of the series has been investigated. All the dimers formed enantiotropic nematic phases. The nematic-isotropic transition temperatures of the dimers and their entropy variation at the phase transition showed a large odd-even effect as a function of n. This behavior was rationalized in terms of the change in the average shape of the spacer on varing the parity of the spacer. The thermal stability and degree of order in the nematic phase and the magnitude of the odd-even effect of NATWESn were very similar to those of the corresponding ether compounds, while they were significantly different from those of the monomesogenic compounds, 4-{4'-(nitrophenylazo)phenoxy}alkanoyl chlorides and the side-chain liquid-crystalline polymers, the poly[1-{4-(4'-nitrophenylazo) phenoxycarbonylalkanoyloxy}ethylene]s. The results were discussed in terms of the 'irtual trimer model'by Imrie.

Thermotropic Liquid Crystalline Behavior of Poly[1-{4-(4'-nitrophenylazo)phenoxycarbonylalkanoyloxy}ethylene]s (폴리[1-{4-(4'-니트로페닐아조)페녹시카보닐알카노일옥시}에틸렌]들의 열방성 액정 거동)

  • Jeong, Seung-Yong;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.489-496
    • /
    • 2008
  • The thermotropic liquid crystalline behavior of a homologous series of poly[1-{4-(4' nitrophenylazo) phenoxycarbonylalkanoyloxy}ethylene]s (NAPEn, n = $2{\sim}8$,10, the number of methylene units in the spacer) have been investigated. All of the homologues formed monotropic nematic phases. The glass transition temperatures decreased with n. This is attributed to a plasticization of the backbone by the side chains. The isotropic-nematic phase transition temperatures decreased with increasing n up to 7 and showed the odd-even effect. However it became almost constant when n is more than 7. This behavior was rationalized in terms of the change in the average shape of the side chain on varing the parity of the spacer. This rationalization also accounts for the observed variation of the entropic gain for the clearing transition. The mesophase properties of NAPEn were entirely different from those reported for the polymers in which the azobenzene groups are attached to polyacrylate, polymathacrylate, and polystyrene backbones through polymethylene spacers. The results indicate that the mode of chemical linkage of the side group with the main chain plays an important role in the formation, stabilization, and type of mesophase.

Study on Graphite/Polypropylene/Liquid Crystalline Polymer Composite for a Bipolar Plate of Polymer Electrolyte Membrane Fuel Cell (고분자 전해질막 수소 연료 전지 분리판 용 흑연/폴리프로필렌/액정고분자 복합 재료의 특성에 관한 연구)

  • Dhungana, Biraj;Son, Younggon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3627-3632
    • /
    • 2015
  • We investigated mechanical, rheological and electrical properties of graphite/PP/LCP composites for a bipolar plate of the polymer electrolyte membrane fuel cell. The composites containing very low molecular weighted PP showed much higher electrical conductivity compared with other thermoplastics. This was attributed to the enhanced dispersion of graphite particles due to the low viscosity of the PP. The conductivity of the composites was increased in a great extent by incorporation of small amount of carbon nano tube (CNT). However, the acid treated CNT which contains oxygen atoms did not increase the conductivity of the composite. From this result, it is concluded that the CNT has higher affinity with non polar polymer. The composite with low molecular weighted PP provided good processability so that the composites can be processed by an injection molding while the mechanical strength is deficient compared to other polymers. In order to reinforce the low mechanical property, LCP/PP was used as a binder and the graphite/PP/LCP composite showed the higher conductivity and moderate mechanical strength maintaining suitable processability.