• 제목/요약/키워드: liquid crystal devices

검색결과 205건 처리시간 0.026초

Current Research Trend on Recycling of Waste Flat Panel Display Panel Glass (폐 평판디스플레이 패널유리의 재활용 연구 동향)

  • Shin, Dongyoon;Kang, Leeseung;Park, Jae Layng;Lee, Chan Gi;Yoon, Jin-Ho;Hong, Hyun Seon
    • Resources Recycling
    • /
    • 제24권1호
    • /
    • pp.58-65
    • /
    • 2015
  • Although Korea is a top market sharing and world leading producer and developer of flat panel display devices, relevant recycling technology is not up to her prestigious status. Besides, most of the waste glass arising from flat panel displays is currently land-filled. The present paper mainly reviews on development of recycling systems for waste TFT-LCD glass from end-of-life LCD TVs and monitors and TFT-LCD process waste of crushed glass particles with target end uses of raw material for high strength concrete pile and glass fibers, respectively. Waste LCD glass was recycled to fabricate ingredients for high strength concrete piles with enhanced physical properties and spherical foam products. The waste LCD glass recycling technology is already developed to fabricate long and short fibers at commercial level. In view of these, future R & D on waste LCD glass materials is to be directed toward implementation of commercial materials recycling system therefrom.

Laser crystallization in active-matrix display backplane manufacturing

  • Turk, Brandon A.;Herbst, Ludolf;Simon, Frank;Fechner, Burkhard;Paetzel, Rainer
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.1261-1262
    • /
    • 2008
  • Laser-based crystallization techniques are ideally-suited for forming high-quality crystalline Si films on active-matrix display backplanes, because the highly-localized energy deposition allows for transformation of the as-deposited a-Si without damaging high-temperature-intolerant glass and plastic substrates. However, certain significant and non-trivial attributes must be satisfied for a particular method and implementation to be considered manufacturing-worthy. The crystallization process step must yield a Si microstructure that permits fabrication of thin-film transistors with sufficient uniformity and performance for the intended application and, the realization and implementation of the method must meet specific requirements of viability, robustness and economy in order to be accepted in mass production environments. In recent years, Low Temperature Polycrystalline Silicon (LTPS) has demonstrated its advantages through successful implementation in the application spaces that include highly-integrated active-matrix liquid-crystal displays (AMLCDs), cost competitive AMLCDs, and most recently, active-matrix organic light-emitting diode displays (AMOLEDs). In the mobile display market segment, LTPS continues to gain market share, as consumers demand mobile devices with higher display performance, longer battery life and reduced form factor. LTPS-based mobile displays have clearly demonstrated significant advantages in this regard. While the benefits of LTPS for mobile phones are well recognized, other mobile electronic applications such as portable multimedia players, tablet computers, ultra-mobile personal computers and notebook computers also stand to benefit from the performance and potential cost advantages offered by LTPS. Recently, significant efforts have been made to enable robust and cost-effective LTPS backplane manufacturing for AMOLED displays. The majority of the technical focus has been placed on ensuring the formation of extremely uniform poly-Si films. Although current commercially available AMOLED displays are aimed primarily at mobile applications, it is expected that continued development of the technology will soon lead to larger display sizes. Since LTPS backplanes are essentially required for AMOLED displays, LTPS manufacturing technology must be ready to scale the high degree of uniformity beyond the small and medium displays sizes. It is imperative for the manufacturers of LTPS crystallization equipment to ensure that the widespread adoption of the technology is not hindered by limitations of performance, uniformity or display size. In our presentation, we plan to present the state of the art in light sources and beam delivery systems used in high-volume manufacturing laser crystallization equipment. We will show that excimer-laser-based crystallization technologies are currently meeting the stringent requirements of AMOLED display fabrication, and are well positioned to meet the future demands for manufacturing these displays as well.

  • PDF

Enhanced Light Harvesting by Fast Charge Collection Using the ITO Nanowire Arrays in Solid State Dye-sensitized Solar Cells

  • Han, Gill Sang;Yu, Jin Sun;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.463-463
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs) have generated a strong interest in the development of solid-state devices owing to their low cost and simple preparation procedures. Effort has been devoted to the study of electrolytes that allow light-to-electrical power conversion for DSSC applications. Several attempts have been made to substitute the liquid electrolyte in the original solar cells by using (2,2',7,7'-tetrakis (N,N-di-p-methoxyphenylamine)-9-9'-spirobi-fluorene (spiro-OMeTAD) that act as hole conductor [1]. Although efficiencies above 3% have been reached by several groups, here the major challenging is limited photoelectrode thickness ($2{\mu}m$), which is very low due to electron diffusion length (Ln) for spiro-OMeTAD ($4.4{\mu}m$) [2]. In principle, the $TiO_2$ layer can be thicker than had been thought previously. This has important implications for the design of high-efficiency solid-state DSSCs. In the present study, we have fabricated 3-D Transparent Conducting Oxide (TCO) by growing tin-doped indium oxide (ITO) nanowire (NWs) arrays via a vapor transport method [3] and mesoporous $TiO_2$ nanoparticle (NP)-based photoelectrodes were prepared using doctor blade method. Finally optimized light-harvesting solid-state DSSCs is made using 3-D TCO where electron life time is controlled the recombination rate through fast charge collection and also ITO NWs length can be controlled in the range of over $2{\mu}m$ and has been characterized using field emission scanning electron microscopy (FE-SEM). Structural analyses by high-resolution transmission electron microscopy (HRTEM) and X-Ray diffraction (XRD) results reveal that the ITO NWs formed single crystal oriented [100] direction. Also to compare the charge collection properties of conventional NPs based solid-state DSSCs with ITO NWs based solid-state DSSCs, we have studied intensity modulated photovoltage spectroscopy (IMVS), intensity modulated photocurrent spectroscopy (IMPS) and transient open circuit voltages. As a result, above $4{\mu}m$ thick ITO NWs based photoelectrodes with Z907 dye shown the best performing device, exhibiting a short-circuit current density of 7.21 mA cm-2 under simulated solar emission of 100 mW cm-2 associated with an overall power conversion efficiency of 2.80 %. Finally, we achieved the efficiency of 7.5% by applying a CH3NH3PbI3 perovskite sensitizer.

  • PDF

Milling Cutter Selection in Machining Center Using AHP (AHP를 활용한 머시닝센터의 밀링커터 선정)

  • Lee, Kyo-Sun;Park, Soo-Yong;Lee, Dong-Hyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • 제40권4호
    • /
    • pp.164-170
    • /
    • 2017
  • The CNC machine tool field is showing a growing trend with the recent rapid development of manufacturing industries such as semiconductors, automobiles, medical devices, various inspection and test equipment, mechanical metal processing equipment, aircraft, shipbuilding and electronic equipment. However, small and medium-sized machining companies that use CNC machine tools are experiencing difficulties in increasingly intense competition. Especially, small companies which are receiving orders from 3rd or 4th venders are very difficult in business management. In recent years, company S experienced difficulty to make product quality and delivery time due to the ignorance of the processing method when manufacturing cooling plate jig made of SUS304 material used for cell phone liquid crystal glass processing. In order to solve these problems, we redesigned the process according to the size of our company and tried to manage all processes with quantified data. In the meantime, we have found that there is a need to improve the cutter process, which accounts for most of the machining process. Therefore, we have investigated the correlation between RPM and FEED of three cutters that have been used in the past. As a result, we found that it is the most urgent problem to solve the roughing process during the cutter operation which occupies more than 70% of the total machining. In order to shorten the machining time and improve the quality in machining of SUS304 cooling plate jig, we select the main factors such as price, tool life, maintenance cost, productivity, quality, RPM, and FEED and use AHP to find the most suitable milling cutter. We also tried to solve the problem of delivery, quality and production capacity which was a big problem of S company through experiment operation with selected cutter tool. As a result, the following conclusions were drawn. First, the most efficient of the three cutters currently available in the machining center has proven to be an M-cutter. Second, although one additional facility was required, it was possible to produce the existing facilities without additional investment by supplementing the lack of production capacity due to productivity improvement. Third, the Company's difficulties in delivery and capacity shortfalls have been resolved. Fourth, annual sales increased by KRW 109 million and profits increased by KRW 32 million annually. Fifth, it can confirm the usefulness of AHP method in corporate decision making and it can be utilized in various facility investment and process improvement in the future.

Implementation of Capacitor and Inductor Applied LCP Substrate for 35-GHz frequency band (35 GHz 대역을 위한 LCP 기판 적용된 커패시터 및 인덕터 구현)

  • Lee, Jiyeon;Ryu, Jongin;Choi, Sehwan;Lee, Jaeyoung
    • Journal of the Microelectronics and Packaging Society
    • /
    • 제27권4호
    • /
    • pp.67-75
    • /
    • 2020
  • In this paper, by applying LCP substrate, the capacitor and inductor are implemented with a variety of value that can be used in 35 GHz circuits. Depending on how to apply it to the circuit, it is required high value by designing the basic structures such as electrode capacitor and spiral inductor. However they are not available in high-frequency domain, because their SRF(Self-Resonant Frequency) is lower than the frequency of 35-GHz. By finding the limit, this paper devised classifying passive devices for the DC and the high-frequency domain. The basic structure is suitable for DC and microstrip λ/8 length stub structure can be used for high-frequency. The open and short stub structure operate as a capacitor and inductor respectively in the frequency of 35 GHz. If their impedance is known, it is possible to extract the value through the impedance-related equation. By producing with the permittivity 2.9 LCP substrate, the basic structure which are available in the DC constituted a library of capacitance of 1.12 to 13.9 pF and inductance of 0.96 to 4.69 nH, measured respectively. The stub structure available in the high-frequency domain were built libraries of capacitance of 0.07 to 2.88 pF and inductance of 0.34 to 1.27 nH, calculated respectively. The measurements have proven how to diversify value, so libraries can be built more variously. It is possible to integrate with the operation circuit of TRM(Transmit-Receive Module) for the frequency 35-GHz, it will be an alternative to the passive devices that can be properly utilized in the circuit.