• Title/Summary/Keyword: liquid column pressure

Search Result 107, Processing Time 0.031 seconds

A Study on Fluid Thansient Accommpanying Cilumn Separation in Oil Hydraulic Pipeline -Investigation on Two-Step Pressure Rise (유압 관로계에서 액주분리를 수반하는 유체과도현상에 관한 연구 -2단입력 상승현상에 관하여-)

  • 염만오;이진걸;이일영;김현기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.984-991
    • /
    • 1988
  • Liquid column separation occurs when the valve on the pipeline is closed rapidly in an oil hydraulic system. In this case two-step pressure rise is sometimes observed in a comparatively short pipeline. In this study the two-step pressure rise phenomenon was investigated experimentally and theoretically. The experiments showed that maximum pressure values during two-step pressure rise might exceed extremely the values computed by the theory of rigid-liquid-column separation. So the two-step pressure rise phenomenon appears one of important factors of pipe strength design. From the theoretical considerations based on the experimental and numerical results, the mechanism of two-step pressure rise phenomenon could be explained clearly.

Spray Characteristics of a Liquid-fueled Ramjet Engine under High Pressure Air Condition (고압 유동조건에서의 액체 램제트 엔진의 분무특성)

  • Youn, H.J.;Lee, C.W.
    • Journal of ILASS-Korea
    • /
    • v.9 no.2
    • /
    • pp.34-40
    • /
    • 2004
  • In a liquid-fueled ramjet engine, the insufficient mixing and evaporation result in the low combustion efficiency and combustion instability. Improving its characteristics and devising a means of fuel droplets with air may compensate these disadvantages of liquid fuel ramjet engine. The jet penetrations of various fuel injectors were measured to investigate the spray characteristics of a liquid-fueled ramjet engine under high pressure air-stream conditions. The penetrations in high pressure conditions are smaller than the values calculated from Inamura's or Lee's equations, and the jet penetrations in the high pressure conditions have a similar tendency. In the dual orifice injectors, the jet penetrations of rare orifice is rapidly increased due to the reduction of the drag, which is created by the jet column of front orifice. The jet penetration of rare orifice is increased because of the drag reduction created by the jet column of the front orifice. Because of the drag reduction formed by the column of jet, the jet penetration in the rear orifice of dual orifice injector is much larger than the jet penetrations of single orifice injector. As the distances of the orifice are increased, the jet penetrations of the rear orifice decrease.

  • PDF

Spray Characteristics of a Liquid-fueled Ramjet Engine under High Pressure Air-stream Conditions

  • Lee, Choong-Won;Youn, Hyun-Jin;Lee, Tae-Hee;Lee, Geun-sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.749-752
    • /
    • 2004
  • In a liquid-fueled ramjet engine, the insufficient mixing and evaporation result in the low combustion efficiency and combustion instability. Improving its spray characteristics and devising a means of mixing fuel droplets with air may compensate these disadvantages of liquid fuel ramjet engine. The jet penetrations of various fuel injectors were measured to investigate the spray characteristics of a liquid-fueled ramjet engine under high pressure air-stream conditions. The penetrations in high pressure conditions are smaller than the values calculated from Inamura's or Lee's equations, and, in the high pressure conditions, the jet penetrations are similar each other. In the dual hole injectors, the jet penetrations of rear orifice is rapidly increased due to the reduction of the drag, which is created by the jet column of front orifice. The jet penetration of rear orifice is increased because of the drag reduction created by the jet column of the front orifice. And, because of the drag reduction formed by the column of jet, the jet penetration in the rear orifice of dual hole injector is much larger than the jet penetration of single hole injector. As the distances of the orifice are increased, the jet penetrations of the rear orifice decrease.

  • PDF

A Hydraulic and Feasibility Study of New Tower Internal in Gas Processing Plants

  • Choo Chang-upp
    • International Journal of Safety
    • /
    • v.3 no.1
    • /
    • pp.15-19
    • /
    • 2004
  • A new tower internal, which is called CSE, is presented. The CSE is composed of a nozzle perforated in its bottom along the entire periphery and equipped with a multi vane axial swirler at the inlet and hollow cylindrical separator at the outlet of the nozzle. According to the experimental work for obtaining the necessary hydraulic information of the CSE, which is used for preliminary design of a separation column, the CSE showed a stable operation over the wide rage of gas/liquid ratio. However, it caused large pressure drop due to the high gas velocity which should carry liquid droplets through the element. The high pressure drop may cause problems in energy recovery and the application of the CSE can be limited to the high pressure columns. Assuming that the tray efficiency of the CSE is the same with the existing separation columns, the results of the column design showed the size reduction of the column diameters by 30 to $40\%$ and investment cost saving, depending on operating conditions. The application of the CSE to separation column may also contribute to the de-bottlenecking the existing column.

Tuned liquid column dampers with adaptive tuning capacity for structural vibration control

  • Shum, K.M.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.543-558
    • /
    • 2005
  • The natural frequencies of a long span bridge vary during its construction and it is thus difficult to apply traditional tuned liquid column dampers (TLCD) with a fixed configuration to reduce bridge vibration. The restriction of TLCD imposed by frequency tuning requirement also make it difficult to be applied to structure with either very low or high natural frequency. A semi-active tuned liquid column damper (SATLCD), whose natural frequency can be altered by active control of liquid column pressure, is studied in this paper. The principle of SATLCD with adaptive tuning capacity is first introduced. The analytical models are then developed for lateral vibration of a structure with SATLCD and torsional vibration of a structure with SATLCD, respectively, under either harmonic or white noise excitation. The non-linear damping property of SATLCD is linearized by an equivalent linearization technique. Extensive parametric studies are finally carried out in the frequency domain to find the beneficial parameters by which the maximum vibration reduction can be achieved. The key parameters investigated include the distance from the centre line of SATLCD to the rotational axis of a structure, the ratio of horizontal length to the total length of liquid column, head loss coefficient, and frequency offset ratio. The investigations demonstrate that SATLCD can provide a greater flexibility for its application in practice and achieve a high degree of vibration reduction. The sensitivity of SATLCD to the frequency offset between the damper and structure can be improved by adapting its frequency precisely to the measured structural frequency.

Experimental Study on the Characteristics of Micro Jet Flow Using Digital Microscopic Holography (디지털 현미경 홀로그래피 기법을 이용한 마이크로 액체 제트 유동에 관한 실험적 연구)

  • Lee, Haneol;Lee, Jaiho;Shin, Weon Gyu
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.1
    • /
    • pp.48-53
    • /
    • 2018
  • In this study, the effect of injection pressure on the column diameter and droplet velocity of liquid jet with the weakly turbulent Rayleigh-like breakup mode is experimentally studied using digital microscopic holography (DMH). The injection nozzle has the diameter of $50{\mu}m$ and injection pressure is varied from 0.1 to 0.4 MPa. When the micro liquid jet is injected into still air, the double-pulsed holograms was recorded on a CCD sensor and numerically reconstructed in order to obtain well focused images. In this study, the liquid column diameter from $50{\mu}m$ orifice nozzle is shown to be changed slightly but the droplet velocity is increased proportionally as the injection pressure is increased.

A Study on the Hydraulic Characteristics of Rashig Super-Ring Random Packing in a Counter-Current Packed Tower (역류식 충전탑에서 Raschig Super-ring Random Packing의 수력학적 특성에 대한 연구)

  • Kang, Sung Jin;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.102-108
    • /
    • 2020
  • In recent years, packed column has been widely used in separation processes, such as absorption, desorption, distillation, and extraction, in the petrochemical, fine chemistry, and environmental industries. Packed column is used as a contacting facility for gas-liquid and liquid-liquid systems filled with random packed materials in the column. Packed column has various advantages such as low pressure drop, economical efficiency, thermally sensitive liquids, easy repairing restoration, and noxious gas treatment. The performance of a packed column is highly dependent on the maintenance of good gas and liquid distribution throughout a packed bed; thus, this is an important consideration in a design of packed column. In this study, hydraulic pressure drop, hold-up as a function of liquid load, and mass transfer in the air, air/water, and air-NH3/water systems were studied to find the geometrical characteristic for raschig super-ring experiment dry pressure drop. Based on the results, design factors and operating conditions to handle noxious gases were obtained. The dry pressure drop of the random packing raschig super-ring was linearly increased as a function of gas capacity factor with various liquid loads in the Air/Water system. This result is lower than that of 35 mm Pall-ring, which is most commonly used in the industrial field. Also, it can be found that the hydraulic pressure drop of raschig super-ring is consistently increased by gas capacity factor with various liquid loads. When gas capacity factor with various liquid loads is increased from 1.855 to 2.323 kg-1/2 m-1/2 S-1, hydraulic pressure drop increases around 17%. Finally, the liquid hold-up related to packing volume, which is a parameter of specific liquid load depending on gas capacity factor, shows consistent increase by around 3.84 kg-1/2 m-1/2 S-1 of the gas capacity factor. However, liquid hold-up significantly increases above it.

Mass Transfer Characteristics in Pressurized Three-phase Slurry Bubble Columns with Variation of Column Diameter (가압 삼상슬러리 기포탑에서 직경변화에 따른 기체-액체 물질전달 특성)

  • Seo, Myung Jae;Lim, Dae Ho;Shin, Ik Sang;Son, Sung Mo;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.459-464
    • /
    • 2009
  • Gas-liquid mass transfer characteristics were investigated in pressurized three-phase slurry bubble columns with variation of column diameter. Effects of gas velocity, operating pressure, liquid viscosity, solid content in the slurry phase and column diameter on the gas-liquid volumetric mass transfer coefficient($k_La$) were determined. The effects of operating variables on the mass transfer coefficient tended to change with variation of column diameter. The mass transfer coefficient increased with increasing gas velocity or operating pressure but decreased with increasing column diameter, liquid viscosity or solid concentration in the slurry phase. The increase trend of $k_La$ value with increasing gas velocity and the decrease trend of $k_La$ value with increasing liquid viscosity, tended to decrease gradually with increasing column diameter. However, the effects of operating pressure and solid concentration in the slurry phase on the $k_La$ value did not change considerably with variation of column diameter. The values of $k_La$ were well correlated with operating variables with in this experimental conditions as $k_La=0.02D^{-0.26}U_G^{0.28}P^{0.43}{\mu}_L^{-0.04}S_c^{-0.35}$.

Rational and efficient approach to the preparation of the active fractions of Scutellaria baicalensis (황금(Scutellaria baicalensis) 유효분획물 제조의 합리적이고 효율적인 접근방법)

  • Kim, Doo-Young;Kim, Won Jun;Kim, Jung-Hee;Oh, Sei-Ryang;Ryu, Hyung Won
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.1
    • /
    • pp.31-38
    • /
    • 2019
  • Scutellaria baicalensis Georgi (Scutellariae Radix) has been widely used as a dietary ingredient and traditional herbal medicine such as diuretic, hyperlipidemia, antibacterial, anti-allergy, anti-inflammatory and anticancer properties. In this study, the isolation of biomarkers or bioactive compounds from complex S. baicalensis extracts represents an essential step for de novo identification and bioactivity assessment. The bioactive fraction consisted of eight compounds which was chromatographed on an analytical high performance liquid chromatography column using two different gradient runs. A simulative replacement of the analytical column with a medium pressure liquid chromatography and open column allowed the determination of gradient profile to allow sufficient separation in the preparative scale. From the optimized method, eight standard compounds have been identified in the fractions. In addition, MS, UV, HRMS detection was provided by ultraperformance liquid chromatographyequadrupole time-of-flight mass spectrometry (UPLC-QTof-MS) of all fractions. Therefore, this scale up procedure was successfully applied to a S. baicalensis extract.

Spray Characteristics of Liquid Jets in Acoustically-Forced Crossflows (음향가진된 횡단류 유동장 내 액체제트의 분무특성)

  • Song, Yoonho;Hwang, Donghyun;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.1-10
    • /
    • 2018
  • This study investigated the acoustic forcing effects on the liquid column breakup length and the trajectory of liquid jets in crossflows. Cold-flow tests with a single hole circular nozzle injector were carried out by changing the injection pressure and acoustic forcing amplitude. Additionally, spray images were obtained at 12 phase angles to investigate the influence of the phage angle. The results revealed that the liquid column breakup lengths generally decreased under the acoustic forcing conditions, in comparison to those under the non-acoustic forcing conditions. However, they were not affected by the variation in the phase angles. On the contrary, it was found that the acoustic forcing hardly influenced the liquid column trajectories.