• Title/Summary/Keyword: liquid chromatography-tandem mass spectrometry

Search Result 405, Processing Time 0.029 seconds

Development of Ultra-High Pressure Capillary Reverse-Phase Liquid Chromatography/Tandem Mass Spectrometry for High-Sensitive and High-Throughput Proteomics

  • Kim, Min-Sik;Choie, Woo-Suk;Shin, Yong-Seung;Yu, Myeong-Hee;Lee, Sang-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1833-1839
    • /
    • 2004
  • Recently mass spectrometry and separation methods such as liquid chromatography have become major tools in the field of proteomics. In this report, we describe in detail our efforts to develop ultra-high pressure capillary reverse-phase liquid chromatography (cRPLC) and its online coupling to a mass spectrometer by a nanoelectrospray (nanoESI) interface. The RPLC system is constructed in house to deliver LC solvents at the pressure up to 20,000 psig, which is four times higher than conventional RPLC systems. The high operation pressure allows the efficient use of packed micro-capillary columns (50, 75 and 150 ${\mu}$m i.d., up to 1.5 m long). We will discuss the effect of column diameter on the sensitivity of cRPLC/MS/MS experiments and the utility of the developed technique for proteome analysis by its application in the analysis of proteome samples having different levels of complexity.

Development of Analytical Method and Monitoring of Organophosphorus Pesticides in the Raw Water and Clean Water by Liquid Chromatography-Tandem Mass Spectrometry (LC/MS/MS를 이용한 유기인계 농약류의 최적 분석법 정립과 원·정수에서의 모니터링)

  • Kim, Gyung-A;Song, Mi-Jeong;Yeom, Hoon-Sik;Son, Hee-Jong;Lee, Sang-Won;Choi, Jin-Tack
    • Journal of Environmental Science International
    • /
    • v.24 no.12
    • /
    • pp.1569-1582
    • /
    • 2015
  • The analytical method for 16 organophosphorus pesticides was developed in this study. The 16 organophosphorus pesticides were analyzed by liquid chromatography-tandem mass spectrometry (LC/MS/MS) using on-line solid phase extraction (on-line SPE) with PLRP- S cartridge. Analysis of all analytes in the MS/MS was processed in the electrospray ioni-zation (ESI) positive mode. They are Azinphos ethyl, Chlorfenvinphos, Ethion, Famphur, Phosmet, Phosphamidon, Terbufos, Aspon, Chlorpyrifos-methyl, Crotoxyphos, Dichlofenthi-on, Dicrotophos, Fonofos, Thionazin, Dimethoate and Iprobenfos. Limits of detection (LODs) and Limits of quantification(LOQs) were obtained as 0.8~2.0 ng/L and 2.6~6.4 ng/L, respectively. All compounds were not detected at the 8 sampling points of the raw water and clean water.

Liquid Chromatography-Tandem Mass Spectrometry Analysis of Riboflavin in Beagle Dog Plasma for Pharmacokinetic Studies

  • Jeong, Hyeon Myeong;Shin, Beom Soo;Shin, Soyoung
    • Mass Spectrometry Letters
    • /
    • v.11 no.1
    • /
    • pp.10-14
    • /
    • 2020
  • Riboflavin is a water-soluble vitamin, which serves as a precursor to flavin mononucleotide and flavin adenine dinucleotide. This study aimed to develop a simple and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis for the quantification of riboflavin in the Beagle dog plasma. This method utilized simple protein precipitation with acetonitrile and 13C4, 15N2-riboflavin was used as an internal standard (IS). For chromatographic separation, a hydrophilic interaction liquid chromatography (HILIC) column was used with gradient elution. The mobile phase consisted of 0.1% (v/v) aqueous formic acid with 10 mM ammonium formate and acetonitrile with 0.1% (v/v) formic acid. Since riboflavin is an endogenous compound, 4% bovine serum albumin in phosphate buffered saline was used as a surrogate matrix to prepare the calibration curve. The quantification limit for riboflavin in the Beagle dog plasma was 5 ng/mL. The method was fully validated for its specificity, sensitivity, accuracy and precision, recovery, and stability according to the US FDA guidance. The developed LC-MS/MS method may be useful for the in vivo pharmacokinetic studies of riboflavin.

Determination of a Novel Antiangiogenic Agent KR-31831 in Rat Plasma by Liquid Chromatography-Tandem Mass Spectrometry

  • Kim, Sook-Jin;Lee, Seung-Seok;Ji, Hye-Young;Lee, Hong-Il;Lee, Seon-Kyoung;Yi, Kyu-Yang;Yoo, Seong-Eun;Hwang, Jeong-Sook;Lee, Hye-Suk
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.217.2-217.2
    • /
    • 2003
  • A liquid chromatography-tandem mass spectrometric (LC/MS/MS) method was developed for the determination of a new anti-angiogenic drug KR-31831 in rat plasma. KR-31831 and internal standard, KR-31543 were extracted from rat plasma with dichloromethane at basic pH. A reverse-phase LC separation was performed on Luna C8 column with the mixture of acetonitrile-ammonium formate (10 mM, pH 4.5) (67:33, v/v) as mobile phase. The detection of analytes was performed using an electrospray ionization tandem mass spectrometry in the multiple-reaction-monitoring mode. (omitted)

  • PDF

Putative multiple reaction monitoring strategy for the comparative pharmacokinetics of postoral administration Renshen-Yuanzhi compatibility through liquid chromatography-tandem mass spectrometry

  • Sun, Yufei;Feng, Guifang;Zheng, Yan;Liu, Shu;Zhang, Yan;Pi, Zifeng;Song, Fengrui;Liu, Zhiqiang
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.105-114
    • /
    • 2020
  • Background: Exploring the pharmacokinetic (PK) changes of various active components of single herbs and their combinations is necessary to elucidate the compatibility mechanism. However, the lack of chemical standards and low concentrations of multiple active ingredients in the biological matrix restrict PK studies. Methods: A putative multiple reaction monitoring strategy based on liquid chromatography coupled with mass spectrometry (LC-MS) was developed to extend the PK scopes of quantification without resorting to the use of chemical standards. First, the compounds studied, including components with available reference standard (ARS) and components lacking reference standard (LRS), were preclassified to several groups according to their chemical structures. Herb decoctions were then subjected to ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry analysis with appropriate collision energy (CE) in MS2 mode. Finally, multiple reaction monitoring transitions transformed from MS2 of ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry were used for ultrahigh-performance liquid chromatography coupled with triple quadrupole mass spectrometry to obtain the mass responses of LRS components. LRS components quantification was further performed by developing an assistive group-dependent semiquantitative method. Results: The developed method was exemplified by the comparative PK process of single herbs Radix Ginseng (RG), Radix Polygala (RP), and their combinations (RG-RP). Significant changes in PK parameters were observed before and after combination. Conclusion: Results indicated that Traditional Chinese Medicine combinations can produce synergistic effects and diminish possible toxic effects, thereby reflecting the advantages of compatibility. The proposed strategy can solve the quantitative problem of LRS and extend the scopes of PK studies.

Simultaneous Determination of Statins in Human Urine by Dilute-and-Shoot-Liquid Chromatography-Mass Spectrometry

  • Jang, Haejong;Mai, Xuan-Lan;Lee, Gunhee;Ahn, Jae Hyoung;Rhee, Jongsook;Truong, Quoc-Ky;Vinh, Dinh;Hong, Jongki;Kim, Kyeong Ho
    • Mass Spectrometry Letters
    • /
    • v.9 no.4
    • /
    • pp.95-99
    • /
    • 2018
  • An innovative, simple, and rapid assay method based on liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was developed and validated for the simultaneous determination of eight statin drugs in human urine. A simple sample clean-up procedure using the "dilute and shoot" (DAS) approach enabled a fast and reliable analysis. The influence of the dilution factor was investigated to ensure detectability and reduce the matrix effect. Chromatographic separation was performed on a Phenomenex Kinetex C18 column ($50{\times}3.0mm$ i.d., $2.6{\mu}m$) using an elution gradient of mobile phase A composed of 0.1% acetic acid, and mobile phase B composed of acetonitrile, at a flow rate of 0.35 mL/min. Quantitation was performed on a triple quadrupole mass spectrometer operated in multiple reaction monitoring (MRM) mode using electrospray ionization in positive ion mode. The total chromatographic run time was 15 min. The method was validated for selectivity, sensitivity, recovery, linearity, accuracy, precision, and stability. The present method was successfully applied to the analysis of Rosuvastatin in urine samples after oral administration to healthy human subjects.

Metabolism and excretion of novel pulmonary-targeting docetaxel liposome in rabbits

  • Wang, Jie;Zhang, Li;Wang, Lijuan;Liu, Zhonghong;Yu, Yu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.45-54
    • /
    • 2017
  • Our study aims to determine the metabolism and excretion of novel pulmonary-targeting docetaxel liposome (DTX-LP) using the in vitro and in vivo animal experimental models. The metabolism and excretion of DTX-LP and intravenous DTX (DTX-IN) in New Zealand rabbits were determined with ultra-performance liquid chromatography tandem mass spectrometry. We found DTX-LP and DTX-IN were similarly degraded in vitro by liver homogenates and microsomes, but not metabolized by lung homogenates. Ultra-performance liquid chromatography tandem mass spectrometry identified two shared DTX metabolites. The unconfirmed metabolite $M_{un}$ differed structurally from all DTX metabolites identified to date. DTX-LP likewise had a similar in vivo metabolism to DTX-IN. Conversely, DTX-LP showed significantly diminished excretion in rabbit feces or urine, approximately halving the cumulative excretion rates compared to DTX-IN. Liposomal delivery of DTX did not alter the in vitro or in vivo drug metabolism. Delayed excretion of pulmonary-targeting DTX-LP may greatly enhance the therapeutic efficacy and reduce the systemic toxicity in the chemotherapy of non-small cell lung cancer. The identification of $M_{un}$ may further suggest an alternative species-specific metabolic pathway.