• 제목/요약/키워드: liquid chromatography mass spectrometry

검색결과 888건 처리시간 0.023초

Determination of Buprofezin Residues in Rice and Fruits Using HPLC with LC/MS Confirmation

  • Lee, Young-Deuk;Jang, Sang-Won
    • 한국환경농학회지
    • /
    • 제29권3호
    • /
    • pp.247-256
    • /
    • 2010
  • A high-performance liquid chromatographic (HPLC) method was developed to determine buprofezin residues in hulled rice and fruits. The buprofezin residue was extracted with acetone and the extract was stepwise purified by liquid-liquid partition and Florisil column chromatography. For rice samples, acetonitrile/n-hexane partition was additionally employed to remove nonpolar lipids. Reversed phase HPLC using an octadecylsilyl column was successfully applied to separate buprofezin from sample co-extractives, as detected by ultraviolet absorption at 250 nm. Recovery experiment at the limit of quantitation validated that the proposed method could evidently determine the buprofezin residue at the level of 0.02 mg/kg. Mean recoveries from hulled rice, apple, pear, and persimmon samples fortified at three tenfold levels were in the range of 80.8~85.2%, 89.1~98.4%, 88.8~95.7% and 90.8~96.2%, respectively. Relative standard deviations of the analytical method were all less than 5%, irrespective of sample types. A selected-ion monitoring LC/mass spectrometry with positive electrospray ionization was also provided to sensitively confirm the suspected residue.

LC/MS/MS를 이용한 원숭이 혈액에서의 Doxifluridine과 대사체 5-FU 동시분석법 개발 및 Validation (Quantitative Determination of Doxifluridine and 5-FU in Monkey Serum Using LC/MS/MS)

  • 우영아;김기환;김원;이종화;정은주;김진호;박귀례;김충용
    • 약학회지
    • /
    • 제51권3호
    • /
    • pp.174-178
    • /
    • 2007
  • A reverse-phase high performance liquid chromatography method with electrospray ionization and detection by mass spectrometry is described for the simultaneous determination of doxifluridine and its active metabolite 5-flu-orouracil (5-FU) in monkey serum. The method has greater sensitivity and simpler process than previous published methods with good accuracy and precision. A proper liquid/liquid extraction was used to extract simultaneously doxifluridine and 5-FU which has considerable difference in the polarity. Extracts were analyzed using LC/MS/MS providing a short analysis time within 5 min. The lower limit of quantification was validated at 10.0 ng/ml of serum for both doxifluridine and 5-FU. Accuracy and precision of quality control (QC) samples for both analytes met FDA Guidance criteria of ±15% for average QC accuracy with coefficients of variation less than 15%. The method will be applicable for preclinical studies and bioequivalence studies.

The separation of arsenic metabolites in urine by high performance liquid chromatography-inductively coupled plasma-mass spectrometry

  • Chung, Jin-Yong;Lim, Hyoun-Ju;Kim, Young-Jin;Song, Ki-Hoon;Kim, Byoung-Gwon;Hong, Young-Seoub
    • Environmental Analysis Health and Toxicology
    • /
    • 제29권
    • /
    • pp.18.1-18.9
    • /
    • 2014
  • Objectives The purpose of this study was to determine a separation method for each arsenic metabolite in urine by using a high performance liquid chromatography (HPLC)-inductively coupled plasma-mass spectrometer (ICP-MS). Methods Separation of the arsenic metabolites was conducted in urine by using a polymeric anion-exchange (Hamilton PRP X-100, $4.6mm{\times}150mm$, $5{\mu}m$) column on Agilent Technologies 1260 Infinity LC system coupled to Agilent Technologies 7700 series ICP/MS equipment using argon as the plasma gas. Results All five important arsenic metabolites in urine were separated within 16 minutes in the order of arsenobetaine, arsenite, dimethylarsinate, monomethylarsonate and arsenate with detection limits ranging from 0.15 to $0.27{\mu}g/L$ ($40{\mu}L$ injection). We used G-EQUAS No. 52, the German external quality assessment scheme and standard reference material 2669, National Institute of Standard and Technology, to validate our analyses. Conclusions The method for separation of arsenic metabolites in urine was established by using HPLC-ICP-MS. This method contributes to the evaluation of arsenic exposure, health effect assessment and other bio-monitoring studies for arsenic exposure in South Korea.

Pharmacokinetic Analysis of Montelukast in Healthy Korean Volunteers by High Performance Liquid Chromatography-Tandem Mass Spectrometry

  • Jo, Min-Ho;Park, Mi-Sun;Seo, Ji-Hyung;Shim, Wang-Seob;Yim, Sung-Vin;Lee, Kyung-Tae
    • Journal of Pharmaceutical Investigation
    • /
    • 제41권5호
    • /
    • pp.289-294
    • /
    • 2011
  • A rapid and specific high performance liquid chromatography-tandem mass (LC/MS/MS) method for the analysis of montelukast in human plasma has been developed and validated. After cold acetonitrile-induced precipitation of the plasma samples, montelukast and glipizide (internal standard, IS) were eluted on a reverse-phase $C_{18}$ column by isocratic mobile phase consisted of 10 mM ammonium formate buffer (adjusted to pH 3.5 with formic acid) and acetonitrile (3:97, v/v). Acquisition was performed with multiple reaction monitoring (MRM) mode by monitoring the transitions: m/z 587.2${\rightarrow}$ 423.2 for montelukast and m/z 446.0${\rightarrow}$321.2 for IS. Ranges of concentration for calibration curves (10-1000 ng/mL) showed correlation coefficients ($r^2$) were better than 0.9948. Precision of intra- and inter-day ranged from 3.70 to 11.68% and from 3.04 to 12.95%, accuracy of intra-day and inter-day ranged from 93.34 to 102.75% and from 100.79 to 107.63%, respectively. The described method provides a fast and sensitive analytical tool for determining montelukast levels in plasma, and was successfully applied to a pharmacokinetic study in 16 healthy human subjects after oral administration of 10mg tablet formulation of montelukast sodium under fasting conditions.

LC-MS/MS를 이용한 반하사심탕 물 추출물 중 13종 성분의 함량분석 (Quantitative Determination of the Thirteen Marker Components in Banhasasim-Tang Decoction Using an Ultra-Performance Liquid Chromatography Coupled to Electrospray Ionization Tandem Mass Spectrometry)

  • 서창섭;신현규
    • 생약학회지
    • /
    • 제47권1호
    • /
    • pp.62-72
    • /
    • 2016
  • Banhasasim-tang is a well-known traditional Korean herbal formula and has been used clinically for the treatment of gastric disease, including acute and chronic gastritis, diarrhea and gastric ulcers in Korea. In this study, an ultra-performance liquid chromatography-electrospray ionization-mass spectrometer method was developed for the quantitative determination of the 13 marker constituents, homogentisic acid (1), 3,4-dihydroxybenzaldehyde (2), spinosin (3), liquiritin (4), baicalin (5), ginsenoside Rg1 (6), liquiritigenin (7), wogonoside (8), ginsenoside Rb1 (9), baicalein (10), glycyrrhizin (11), wogonin (12), and 6-gingerol (13) in Banhasasim-tang decoction. Separation of the compounds 1-13 was using an UPLC BEH $C_{18}$ ($100{\times}2.1mm$, $1.7{\mu}m$) column and column oven temperature was maintained at $45^{\circ}C$. The mobile phase consisted of 0.1% (v/v) formic acid in water (A) and acetonitrile (B) by gradient elution. The injection volume and flow rate were $2.0{\mu}L$ and 0.3 mL/min, respectively. Calibration curves of the compounds 1-13 were showed with $r^2$ values ${\geq}0.9908$. The limit of detection and limit of quantification values of the compounds 1-13 were 0.04-1.11 ng/mL and 0.13-3.33 ng/mL, respectively. Among the these compounds, the compounds 1-3 were not detected, while the compounds 4-13 were detected in the ranges of $3.20-107,062.98{\mu}g/g$ in Banhasasim-tang sample.

UPLC-MS/MS를 이용한 작약감초탕 물 추출물 중 11종 성분의 함량분석 (Quantitative Analysis of the Eleven Marker Components in Traditional Korean Formula, Jakyakgamcho-Tang Decoction Using an Ultra-Performance Liquid Chromatography Coupled to Electrospray Ionization Tandem Mass Spectrometry)

  • 서창섭;신현규
    • 약학회지
    • /
    • 제60권2호
    • /
    • pp.64-72
    • /
    • 2016
  • Jakyakgamcho-tang is a well-known traditional herbal medicine and has been used for the treatment of mainly pains in oriental medicine. In this study, analytical method for the quantitative determination of the eleven marker components, gallic acid (1), oxypaeoniflorin (2), paeoniflorin (3), albiflorin (4), liquiritin (5), isoliquiritin (6), ononin (7), liquiritigenin (8), benzoylpaeoniflorin (9), paeonol (10), and glycyrrhizin (11) in Jakyakgamcho-tang decoction was performed using an ultra-performance liquid chromatography-electrospray ionization-mass spectrometer. The analytical column for separation of the compounds 1~11 was used an UPLC BEH $C_{18}$ ($100{\times}2.1mm$, $1.7{\mu}m$) column and column oven temperature was maintained at $45^{\circ}C$. The mobile phase consisted of 0.1% (v/v) aqueous formic acid (A) and acetonitrile (B) by gradient elution. The flow rate was 0.3 ml/min and injection volume was $2.0{\mu}l$. Correlation coefficient in the calibration curves of the compounds 1~11 were showed a good linearity with more than 0.99. The limit of detection and limit of quantification values of the compounds 1~13 were detected in the ranges 0.06~18.43 ng/ml and 0.18~58.29 ng/ml, respectively. Among the compounds 1~11, the compounds 10 were not detected in this sample, while the ten compounds, 1~9 and 11, were detected $44.05{\sim}19,289.05{\mu}g/g$ in Jakyakgamcho-tang extract.

Identification of Factors Regulating Escherichia coli 2,3-Butanediol Production by Continuous Culture and Metabolic Flux Analysis

  • Lu, Mingshou;Lee, Soo-Jin;Kim, Bo-Rim;Park, Chang-Hun;Oh, Min-Kyu;Park, Kyung-Moon;Lee, Sang-Yup;Lee, Jin-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권5호
    • /
    • pp.659-667
    • /
    • 2012
  • 2,3-Butanediol (2,3-BDO) is an organic compound with a wide range of industrial applications. Although Escherichia coli is often used for the production of organic compounds, the wild-type E. coli does not contain two essential genes in the 2,3-BDO biosynthesis pathway, and cannot ferment 2,3-BDO. Therefore, a 2,3-BDO biosynthesis mutant strain of Escherichia coli was constructed and cultured. To determine the optimum culture factors for 2,3-BDO production, experiments were conducted under different culture environments ranging from strongly acidic to neutral pH. The extracellular metabolite profiles were obtained using high-performance liquid chromatography (HPLC), and the intracellular metabolite profiles were analyzed by ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry (UPLC/Q-TOF-MS). Metabolic flux analysis (MFA) was used to integrate these profiles. The metabolite profiles showed that 2,3-BDO production favors an acidic environment (pH 5), whereas cell mass favors a neutral environment. Furthermore, when the pH of the culture fell below 5, both the cell growth and 2,3-BDO production were inhibited.

Development of Isotope Dilution-Liquid Chromatography/Tandem Mass Spectrometry as a Candidate Reference Method for the Determination of Acrylamide in Potato Chips

  • Park, Sun-Young;Kim, Byung-Joo;So, Hun-Young;Kim, Yeong-Joon;Kim, Jeong-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권5호
    • /
    • pp.737-744
    • /
    • 2007
  • An isotope dilution-liquid chromatography/tandem mass spectrometric method was developed as a candidate reference method for the accurate determination of acrylamide in potato chips, starch-rich foodstuff cooked at high temperature. Sample was spiked with 13C3-acrylamide and then extracted with water. The extract was further cleaned up with an Oasis HLB solid-phase extraction (SPE) cartridge and an Oasis mixed-phase cation exchange (MCX) SPE cartridge. The extract was analyzed by using LC/ESI/Tandem MS in positive ion mode. LC with a medium reversed-phase (C4) column was optimized to obtain adequate chromatographic retention and separation of acrylamide. MS was operated to selectively monitor [M+H]+ ions of the analyte and its isotope analogue at m/z 72 and m/z 75, respectively. Sample was also analyzed by the LC/MS with selectively monitoring the collisionally induced dissociation channels of m/z 72 → m/z 55 and m/z 75 → 58. Compared to the LC/MS chromatograms, the LC/MS/MS chromatograms showed substantially reduced background chemical noises coming from solvent clusters formed during ESI spray processes and interferences from sample matrix. Repeatability and reproducibility studies showed that the LC/MS/MS method is a reliable and reproducible method which can provide a typical method precision of 1.0% while the LC/MS results are influenced by chemical interferences.

Determination of methamphetamine and amphetamine enantiomers in human urine by chiral stationary phase liquid chromatography-tandem mass spectrometry

  • Sim, Yeong Eun;Ko, Beom Jun;Kim, Jin Young
    • 분석과학
    • /
    • 제32권5호
    • /
    • pp.163-172
    • /
    • 2019
  • Methamphetamine (MA) is currently the most abused illicit drug in Korea and its major metabolite is amphetamine (AP). As MA exist as two enantiomers with the different pharmacological properties, it is necessary to determine their respective amounts in a sample. Thus a chiral stationary phase liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed for identification and quantification of d-MA, l-MA, d-AP, and l-AP in human urine. Urine sample ($200{\mu}L$) was diluted with pure water and purified using solid-phase extraction (SPE) cartridge. A $5-{\mu}L$ aliquot of SPE treated sample solution was injected into LC-MS/MS system. Chiral separation was carried out on the Astec Chirobiotic V2 column with an isocratic elution for each enantiomer. Identification and quantification of enantiomeric MA and AP was performed using multiple reaction monitoring (MRM) detection mode. Linear regression with a $1/x^2$ as the weighting factor was applied to generate a calibration curve. The linear ranges were 25-1000 ng/mL for all compounds. The intra- and inter-day precisions were within 3.6 %, while the intra- and inter-day accuracies ranged from -5.4 % to 11.8 %. The limits of detection were 2.5 ng/mL (d-MA), 3.5 ng/mL (l-MA), 7.5 ng/mL (d-AP), and 7.5 ng/mL (l-AP). Method validation parameters such as selectivity, matrix effect, and stability were evaluated and met acceptance criteria. The applicability of the method was tested by the analysis of genuine forensic urine samples from drug abusers. d-MA is the most common compound found in urine and mainly used by abusers.

Enhanced Large-Scale Production of Hahella chejuensis-Derived Prodigiosin and Evaluation of Its Bioactivity

  • Jeong, Yu-jin;Kim, Hyun Ju;Kim, Suran;Park, Seo-Young;Kim, HyeRan;Jeong, Sekyoo;Lee, Sang Jun;Lee, Moo-Seung
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권12호
    • /
    • pp.1624-1631
    • /
    • 2021
  • Prodigiosin as a high-valued compound, which is a microbial secondary metabolite, has the potential for antioxidant and anticancer effects. However, the large-scale production of functionally active Hahella chejuensis-derived prodigiosin by fermentation in a cost-effective manner has yet to be achieved. In the present study, we established carbon source-optimized medium conditions, as well as a procedure for producing prodigiosin by fermentation by culturing H. chejuensis using 10 L and 200 L bioreactors. Our results showed that prodigiosin productivity using 250 ml flasks was higher in the presence of glucose than other carbon sources, including mannose, sucrose, galactose, and fructose, and could be scaled up to 10 L and 200 L batches. Productivity in the glucose (2.5 g/l) culture while maintaining the medium at pH 6.89 during 10 days of cultivation in the 200 L bioreactor was measured and increased more than productivity in the basal culture medium in the absence of glucose. Prodigiosin production from 10 L and 200 L fermentation cultures of H. chejuensis was confirmed by high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) analyses for more accurate identification. Finally, the anticancer activity of crude extracted prodigiosin against human cancerous leukemia THP-1 cells was evaluated and confirmed at various concentrations. Conclusively, we demonstrate that culture conditions for H. chejuensis using a bioreactor with various parameters and ethanol-based extraction procedures were optimized to mass-produce the marine bacterium-derived high purity prodigiosin associated with anti-cancer activity.