Browse > Article
http://dx.doi.org/10.4014/jmb.1112.12018

Identification of Factors Regulating Escherichia coli 2,3-Butanediol Production by Continuous Culture and Metabolic Flux Analysis  

Lu, Mingshou (Department of Chemical and Biomolecular Engineering, Sogang University)
Lee, Soo-Jin (Department of Chemical and Biomolecular Engineering, Sogang University)
Kim, Bo-Rim (Department of Chemical and Biomolecular Engineering, Sogang University)
Park, Chang-Hun (Department of Chemical and Biomolecular Engineering, Sogang University)
Oh, Min-Kyu (Department of Chemical and Biological Engineering, Korea University)
Park, Kyung-Moon (Department of Biological and Chemical Engineering, Hongik University)
Lee, Sang-Yup (College of Science and Bioengineering, KAIST)
Lee, Jin-Won (Department of Chemical and Biomolecular Engineering, Sogang University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.5, 2012 , pp. 659-667 More about this Journal
Abstract
2,3-Butanediol (2,3-BDO) is an organic compound with a wide range of industrial applications. Although Escherichia coli is often used for the production of organic compounds, the wild-type E. coli does not contain two essential genes in the 2,3-BDO biosynthesis pathway, and cannot ferment 2,3-BDO. Therefore, a 2,3-BDO biosynthesis mutant strain of Escherichia coli was constructed and cultured. To determine the optimum culture factors for 2,3-BDO production, experiments were conducted under different culture environments ranging from strongly acidic to neutral pH. The extracellular metabolite profiles were obtained using high-performance liquid chromatography (HPLC), and the intracellular metabolite profiles were analyzed by ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry (UPLC/Q-TOF-MS). Metabolic flux analysis (MFA) was used to integrate these profiles. The metabolite profiles showed that 2,3-BDO production favors an acidic environment (pH 5), whereas cell mass favors a neutral environment. Furthermore, when the pH of the culture fell below 5, both the cell growth and 2,3-BDO production were inhibited.
Keywords
2,3-Butanediol fermentation; continuous culture; pH influence; metabolic flux analysis; intracellular metabolic measurements;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Jorgensen, H., J. Nielsen, J. Villadsen, and H. Mollgaard. 1995. Metabolic flux distribution in Penicillium chrysogenum during fed-batch cultivations. Biotechnol. Bioeng. 46: 117-131.   DOI   ScienceOn
2 Maddox, I. S. 2008. Microbial production of 2,3-butanediol. pp. 269-291. In H. J. Rehm and G. Reed (eds.). Biotechnology Set, 2nd Ed. Wiley, New York.
3 Nielsen, D. R., S. H. Yoon, C. J. Yuan, and K. L. Prather. 2010. Metabolic engineering of acetoin and meso-2,3-butanediol biosynthesis in Escherichia coli. Biotechnol. J. 5: 274-284.   DOI   ScienceOn
4 Nissen, T. L., U. Schulze, J. Nielsen, and J. Villadsen. 1997. Flux distribution in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 143: 203-218.   DOI   ScienceOn
5 Ohashi, Y., A. Hirayama, T. Ishikawa, S. Nakamura, K. Shimizu, Y. Ueno, et al. 2008. Depiction of metabolome changes in histidine-starved Escherichia coli by CE-TOFMS. Mol. Biosyst. 4: 135-147.   DOI   ScienceOn
6 Ragauskas, A. J., C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, et al. 2006. The path forward for biofuels and biomaterials. Science 311: 484-489.   DOI   ScienceOn
7 Stephanopoulos, G. N., A. A. Aristido, and J. Nielsen. 1998. Metabolic Engineering, Principles and Methodologies. Academic Press, San Diego.
8 Van Houdt, R., A. Aertsen, and C. W. Michiels. 2007. Quorum-sensing- dependent switch to butanediol fermentation prevents lethal medium acidification in Aeromonas hydrophila AH-1N. Res. Microbiol. 158: 379-385.   DOI   ScienceOn
9 Winer, C. L., W. B. Dunn, S. Schuler, D. Broadhurst, R. Jarvis, G. M. Stephens, and R. Goodacre. 2008. Global metabolic profiling of Escherichia coli cultures: An evaluation of methods for quenching and extraction of intracellular metabolites. Anal. Chem. 80: 2939-2948.   DOI   ScienceOn
10 Xiu, Z. L. and A. P. Zeng. 2008. Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl. Microbiol. Biotechnol. 78: 917-926.   DOI   ScienceOn
11 Yim, H., R. Haselbeck, W. Niu, C. Pujol-Baxley, A. Burgard, J. Boldt, et al. 2011. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nature Chem. Biol. dio:1038/NCHEMBIO.580.
12 Zeng, A. P., H. Biebl, and W. D. Deckwer. 1990. Effect of pH and acetic acid on growth and 2,3-butanediol production of Enterobacter aerogenes in continuous culture. Appl. Microbiol. Biotechnol. 33: 485-489.
13 Celinska, E. and W. Grajek. 2009. Biotechnological production of 2,3-butanediol - Current state and prospects. Biotechnol. Adv. 20: 715-725.
14 Biebl, H., A. P. Zeng, K. Menzel, and W. D. Deckwer. 1998. Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumonia. Appl. Microbiol. Biotechnol. 50: 24-29.   DOI   ScienceOn
15 Bonarius, H. P., V. Hatzimanikatis, K. P. Meesters, C. D. de Gooijer, G. Schmid, and J. Tramper. 1995. Metabolic flux analysis of hybridoma cells in different culture media using mass balance. Biotechnol. Bioeng. 50: 299-318.
16 Bryn, K., J. C. Ulstrup, and F. C. Stormer. 1973. Effect of acetate upon the formation of acetoin in Klebsiella and Enterobacter and its possible practical application in a rapid Voges-Proskauer test. Appl. Microbiol. 25: 511-512.
17 Emerson, R. R., M. C. Flickinger, and G. T. Tsao. 1982. Kinetics of dehydration of aqueous 2,3-butanediol to methyl ethyl ketone. Ind. Eng. Chem. Prod. Res. Dev. 21: 473-477.   DOI
18 Ji, X. J., H. Huang, and P. K. Ouyang. 2011. Microbial 2,3-butanediol production: A state-of-the-art review. Biotechnol. Adv. 29: 351-364.   DOI   ScienceOn