• Title/Summary/Keyword: liquid calcium

Search Result 219, Processing Time 0.026 seconds

Deoxidation of Titanium Scrap by Calciothermic Reduction (칼슘열환원법(熱還元法)에 의한 타이타늄 스크랩의 탈산(脫酸))

  • Yoon, Moo-Won;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.22 no.6
    • /
    • pp.41-47
    • /
    • 2013
  • In this study, deoxidation of Ti scrap using liquid calcium was investigated. Experiments were conducted in a closed stainless steel chamber under Ar atmosphere during 30 to 90 minutes. Oxygen content of Ti scrap was reduced from 0.54 to 0.19 wt% by calciothermic reduction in 30 minutes at $1000^{\circ}C$ and 2.5 Ti/Ca mass ratio. By the calciothermic reduction of Ti scrap for 30 minutes under the reaction temperature of $1100^{\circ}C$ and 2.5 Ti/Ca mass, a minimum oxygen content of about 0.126 wt% in Ti scrap was obtained.

Physico-chemical properties between organic and conventional kiwifruit orchards in Korea

  • Cho, Y.;Kim, B.;Cho, H.;Jeong, B.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.242-246
    • /
    • 2011
  • Organic kiwifruit orchard soils were compared with conventional ones in Korea. Soil structure of organic soil had higher gaseous and liquous phase as well as soil porosity in the surface soil. Although the nutritional level of each orchards were quite different among soils, the analysis of both system revealed that organic kiwifruit orchard soil had similar or even higher nutrient level (N and organic matter content in surface soil) compared to conventional ones. The organic matter content of deep soil also had the high tendency in deep soil of organic soil. Higher level of nitrogen in organic surface soil is presumably due to the excessive application of organic compost and liquid fertilizer rather than the contribution by grasses such as green manure. Available phosphorous level of organic system was quite high but similar in surface soil of both system, compared to the recommended level. Potassium, calcium and magnesium levels were also enough in organic kiwifruit orchard soils.

Investigation on alkalinity of pore solution and microstructure of hardened cement-slag pastes in purified water

  • Hu, Ya-Ru;Zuo, Xiao-Bao;Li, Xiang-Nan;Jiang, Dong-Qi
    • Advances in concrete construction
    • /
    • v.12 no.6
    • /
    • pp.507-515
    • /
    • 2021
  • To evaluate the influence of slag on the alkalinity of pore solution and microstructure of concrete, this paper performs a leaching experiment on hardened cement-slag pastes (HCSP) slice specimens with different slag content in purified water. The pH value of pore solution, average porosity, morphology, phase composition and Ca/Si of HCSP specimens in the leaching process are measured by solid-liquid extraction, saturated-dried weighing, scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) and X-ray diffraction (XRD). Results shows that the addition of slag can mitigate an increase in porosity and a decrease in Ca/Si of HCSP in the leaching process. Besides, an appropriate slag content can improve the microstructure so as to obtain the optimum leaching resistance of HCSP, which can guarantee the suitable alkalinity of pore solution to prevent a premature corrosion of reinforced bar. The optimum slag content is 40% in HCSP with a water-binder ratio of 0.45, and an excessive slag causes a significant decrease in the alkalinity of pore solution, resulting in a loss of protection on reinforced bar in HCSP.

Improving the CO2 Sequestration Capability and Mechanical Properties of CO2 Reactive Cement Paste Using pH Swing Method (pH Swing법을 활용한 이산화탄소 반응경화형 시멘트 경화체의 CO2 고정화 성능 및 기계적 물성 개선)

  • Cho, Seong-Min;Kim, Gyeong-Ryul;Bae, Sung-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.115-116
    • /
    • 2023
  • This study aims to investigate and improve the carbon dioxide sequestration capability and the mechanical properties of non-hydraulic low calcium silicate cement especially designed for CO2 reaction and ordinary Portland cement subjected to the carbonation curing facilitating pH swing method. Nitric acid (HNO3) was utilized as an liquid for the mixing of cement paste to enhance the initial dissolution of Ca ions from the cements by promoting low pH environment and prevent the direct precipitation of Ca with the anion, owing to the high solubility of Ca(NO3)2 in water. The results presented that the higher the concentration of HNO3, the higher the compressive strength and CO2 sequestration (until 0.1 M). Ca dissolution caused by the harsh acid attack onto the anhydrous cement particle lead to the higher carbonation reaction degree, forming abundant CaCO3 crystals after the reaction. However, cement paste mixed with excessively high concentration of HNO3 presented deterioration due to the too harsh pH environment and abundant NO3- ions which are known to retard the reaction of cement.

  • PDF

Effects of Mixture Application of Concentrated Pig Slurry and Byproduct Liquid Fertilizer on the Growth and Yield of Chinese Cabbage (돈분뇨 농축액비와 부산물액비 혼합시용이 배추의 생육과 수량에 미치는 영향)

  • Ryoo, Jong-Won
    • Korean Journal of Organic Agriculture
    • /
    • v.18 no.2
    • /
    • pp.271-282
    • /
    • 2010
  • This study was conducted to investigate the effects of concentrated pig slurry and byproduct liquid fertilizer on the growth and yield of chinese cabbage. The experiment was conducted in a rain-shelter house which was installed in the agriculture farm. Plants were fertilized with concentrated slurry (CS), byproduct fertilizer (BF), mixture of concentrated slurry and byproduct liquid fertilizer (CS+BF), combined organic and chemical fertilizer (CS+BF+BF) and chemical fertilizer (CF) as control. 1. The pH level of byproduct liquid was decreased from the 3rd to the 7th day and increased 9 day to 14th day, but pH of concentrated slurry (CS) was not greatly varied. EC of concentrated slurry (CS) and byproduct liquid was increased gradually during the fermentation. 2. The concentrated slurry (CS) was low in phosphorus, calcium, magnesium, rich in potassium and unbalanced as a low nitrogen and high potassium. But byproduct liquid fertilizer was balanced in nitrogen and potassium ratio. 3. The leaf number, head height, head width of chinese cabbage in treatment with organic and chemical fertilizer (CS+BF+N) showed significant difference compared with control. The plant and head weight of chinese cabbage in treatment of concentrated slurry was severely decreased, but that in treatment organic and chemical fertilizer (CS+BF+N) were increased 8, 10% compared with control chemical fertilizer (CF), respectively. 4. The content of $K_2O$ in plant tissue and in soil was increased after using concentrated slurry. On the other hand, mineral content of except $K_2O$ did not differ significantly between any of the treatments. In conclusion, organic and chemical fertilizer (CS+BF+N) could improve growth and head weight of chinese cabbage.

Development of Solid Self-nanoemulsifying Drug Delivery Systems of Ticagrelor Using Porous Carriers (다공성의 캐리어를 이용한 티카그렐러 함유 고형의 자가 나노유화 약물전달시스템 개발)

  • Choi, Hyung Joo;Kim, Kyeong Soo
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.502-510
    • /
    • 2021
  • The objective of this study was to develop a novel ticagrelor-loaded self-nanoemulsifying drug delivery system with an enhanced solubility and dissolution rate. Numerous oils and surfactants were screened, then medium chain triglyceride (MCT) oil and the surfactants polyoxyethylene sorbitan monooleate (Tween 80) and Labrafil M1944CS were selected for the preparation of the ticagrelor-loaded self-nanoemulsifying drug delivery system. A pseudo-ternary phase diagram was constructed to detect the nanoemulsion region. Of the various formulations tested, the liquid SNEDDS, composed of MCT (oil), Tween 80 (surfactant), and Labrafil M1944CS (cosurfactant) at a weight ratio of 20/70/10 produced the smallest emulsion droplet size (around 20.56±0.70 nm). Then, particle size, polydispersity, and zeta potential were measured using drugs containing liquid SNEDDS. The selected ticagrelor-loaded liquid SNEDDS was spray-dried to convert it into a ticagrelor-loaded solid SNEDDS with a suitable inert carrier, such as silicon dioxide, calcium silicate, or magnesium aluminometasilicate. The solid SNEDDS was characterized by scanning electron microscopy, transmission electron microscopy, and in vitro dissolution studies. SEM, PXRD, and DSC results suggested that amorphous ticagrelor was present in the solid SNEDDS. Also, the solid SNEDDS significantly increased the dissolution rate of ticagrelor. In particular, the emulsion particle size and the polydispersity index of the solid SNEDDS using silicon dioxide (SS1) as a carrier was the smallest among the evaluated solid SNEDDS, and the flowability and compressibility result of the SS1 was the most suitable for the manufacturing of solid dosage forms. Therefore, solid SNEDDS using silicon dioxide (SS1) could be a potential nano-sized drug delivery system for the poorly water-soluble drug ticagrelor.

The Effects of Soil factors on the Growth in Populus euramericana Guinier (토양인자(土壤因子)가 이태리 포플러의 생장(生長)에 미치는 영향)

  • Son, Doo Sik;Hong, Sung Chun;Joo, Sung Hyun
    • Current Research on Agriculture and Life Sciences
    • /
    • v.14
    • /
    • pp.49-60
    • /
    • 1996
  • In order to evaluate soil factors affecting the growth of Italian poplar, 23 areas planted with Italian poplar were surveyed. These 23 areas were classified into 3 categories, river-side, fallow-land and hill-side. The growth performance and soil factors for each area were investigated. The growth of Italian poplar at river-side was shown to be superior to that of fallow-land and fill-side. The rates of growth for fallow-land and hill-side are decreased by 8% and 21% compared to those of river-side, respectively. This suggests that plantation of Italian poplar at hill-side would not be profitable. Soil conditions of high productive area appeared liquid phase 20%, porosity 45%, water holding capacity 35 - 40%, soil hardness $1kg/cm^3$. pH 6 and rich in organic matter and total nitrogen. The results of factor analysis for soil factors affecting to Italian poplar growth that showed eigenvalue over 1 and communality value over 70% explained factor 1 : liquid phase, porosity and water holding capacity, factor 2 : pH and calcium, and factor 3 : soil hardness. This suggests that physical characteristics of soil is more important than chemical characteristics for Italian poplar growth. Multiregerssion analysis was conducted between diameter growth and soil hardness, liquid phase and calcium. The t-values for each independent variables showed significance at 1 - 10% level, but water holding capacity and pH are not significant. It is supposed that sites suitable to Italian poplar were alluvial plain of sandy loam or part of banking soil, well-ventilating soil, lower soil hardness, apposite soil moisture absorbing with about 100cm of ground water level, plentiful organic matters and total nitrogen and little acidity soil.

  • PDF

A Study on the Recovery of Lithium from Secondary Resources of Ceramic Glass Containing Li-Al-Si by Ca-based Salt Roasting and Water Leaching Process (Li-Al-Si 함유 유리세라믹 순환자원으로부터 Ca계열 염배소법 및 이에 따른 수침출 공정에 의한 리튬의 회수 연구)

  • Sung-Ho Joo;Dong Ju Shin;Dongseok Lee;Shun Myung Shin
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.42-49
    • /
    • 2023
  • The glass ceramic secondary resource containing Li-Al-Si is used in inductor, fireproof glass, and transparent cookware and accounts for 14% of the total consumption of Li, which is the second most widely used after Li-ion batteries. Therefore, new Li resources should be explored when the demand for Li is exploding, and extensive research on Li recovery is needed. Herein, we recovered Li from fireproof Li-Al-Si glass ceramic, which is a new secondary resource containing Li. The fireproof glass among all Li-Al-Si glass ceramics was used as raw material that contained 1.5% Li, 9.4% Al, and 28.9% Si. The process for recovering Li from the fireproof glass was divided into two parts: (1) calcium salt roasting and (2) water leaching. In calcium salt roasting, a sample of fireproof glass was crushed and ground below 325 mesh. The leaching efficiency was compared based on the presence or absence of heat treatment of the fireproof glass. Moreover, the leaching rates based on the input ratios of calcium salt, Li-Al-Si glass, and ceramics and the leaching process based on calcium salt roasting temperatures were compared. In water leaching, the leaching and recovery rates of Li based on different temperatures, times, solid-liquid ratios, and number of continuous leaching stages were compared. The results revealed that fireproof glass ceramics containing Li-Al-Si should be heat treated to change phase to beta-type spodumene. CaCO3 salt should be added at a ratio of 6:1 with glass ceramics containing Li-Al-Si, and then leached 4 times or more to achieve a recovery efficiency of Li over 98% from a solution containing 200 mg/L of Li.

Adsorption Behavior of Pb2+ Ions on Alginate Beads and Capsules (알지네이트 비드와 캡슐에서의 납 이온의 흡착거동)

  • Shin, Eun Woo;Thuong, Nguyen Thi Lien;Yoo, Ik-Keun
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.166-171
    • /
    • 2007
  • The adsorption behavior of $Pb^{2+}$ was compared between calcium alginate beads and capsules, which have different structures of alginate-gel core beads and liquid core alginate-membrane capsules, respectively. In terms of adsorption kinetics and isotherms, adsorption characteristics depending on pH and hardening time were compared for both adsorbents and also released calcium ion during the adsorption process was monitored. The adsorption of $Pb^{2+}$ on both adsorbents was caused by surface complexation and ion exchange mechanisms, both of which have similar effects on adsorption process regardless of the amount of adsorbed $Pb^{2+}$. The dependence of $Pb^{2+}$ adsorption upon pH was also similar for both adsorbents indicating the existence of similar functional groups on the surface of adsorbents. However, a different $Pb^{2+}$ adsorption behavior was observed considering the adsorption kinetics. The adsorption kinetic of $Pb^{2+}$ on alginate beads was slower than on alginate capsules and the maximum adsorption loading ($Q_{max}$) onto alginate beads was also less than onto alginate capsules by 49%. This drawback of alginate beads compared to capsules were ascribed to a diffusion limitation due to solid gel-core structure of alginate beads.

Effect of 12-week Low Calorie Diet and Behavior Modification on the Anthropomeric Indices and Biochemical Nutritional Status of Obese Woman (12주 동안의 저열량식사와 행동수정요법이 비만여성의 체격지수와 생화학적 영양상태에 미치는 영향)

  • Son, Sook-Mee;Kim, Hee-Jun
    • Korean Journal of Community Nutrition
    • /
    • v.10 no.4
    • /
    • pp.525-535
    • /
    • 2005
  • This study was conducted to investigate the effect of a 3 week low calorie diet (LCD) and a 9 week of behavior modification (BM) program on the weight loss, mineral and vitamin status in 22 obese women. The subject were healthy, obese (PIBW> $120\%$) women aged 20 - 50 Yr and not taking any medications known to influence body composition, mineral or vitamin metabolism During the LCD program, subjects were provided commercial liquid formulas with 125 kcal per pack and were instructed to have a formula for replacement of one meal and at least one regular meal per day within the range of daily 800 - 1200 kcal intake. During the BM program the subjects weekly attended the group nutrition counseling session to encourage themselves to modify their eating behavior and spontaneously restrict their energy intakes. The BM program focused on stimulus control, control of portion sizes and modification of binge eating and other adverse habits. The initial mean energy intake of subjects was 2016.9 $\pm$ 129.8 kcal ($100.8\%$ of RDA) and dropped to 1276.5 $\pm$ 435.7 kcal at the end of a 3 week of LCD program and elevated to 1762 $\pm$ 329.3 kcal at the end of a 9 week of BM program. Carbohydrate, protein and fat intakes were significantly decreased at the end of the LCD but carbohydrate was the only macro nutrient that showed significant decrease (p < 0.05) at the end of the BM program compared to baseline. Calcium and iron intakes decreased significantly (p < 0.01, respectively) with no significant changes in other micronutrients at the end of the LCD. The mean weight of the subjects decreased from 73.8 $\pm$ 8.0 kg to 69.2 $\pm$ 7.7 kg with LCD and ended up with 67.7 $\pm$ 7.1 kg after 9 weeks of BM. The 3 weeks of LCD reduced most of the anthropometric indices such as BMI, PIBW, fat weight, wast-to-hip ratio and subscapular and suprailiac skinfold thickness. The 9 weeks of behavior modification showed slight change or maintenance of each anthropometric measurements. Weight loss and decreased WHR with the diet program induced significantly decreased systolic blood pressure. SGOT, SGPT and serum insulin levels with improved serum lipid profiles. Biochemical parameters related to iron status such as hemoglobin, hematocrit were significantly decreased (p < 0.01) at the end of the LCD. But their mean values were within normal range. The mean serum 25 (OH) vitamin $D_3$ level significantly increased after whole diet program. Serum folate level significantly decreased after 12 weeks of diet program. In conclusion 3 weeks of LCD brought 4.6 kg reduction in body weight without risk of iron, zinc or vitamin D deficiency and 9 weeks of the BM was effective to maintain nutritional status with slightly more weight reduction (1.5 kg). However calcium intake and serum folate should be monitored during the LCD and BM because of increased risk of deficiencies.