• 제목/요약/키워드: liquid alumina

검색결과 88건 처리시간 0.027초

진공조에 위치한 1차 SQUID 미분계를 이용한 헬멧형 뇌자도 장치의 제작 (A Helmet-type MEG System with $1^{st}$ order SQUID Gradiometer Located in Vacuum)

  • 유권규;김기웅;이용호
    • Progress in Superconductivity
    • /
    • 제11권1호
    • /
    • pp.78-82
    • /
    • 2009
  • We have fabricated a helmet type magnetoencephalogrphy(MEG) with a $1^{st}$ order gradiometer in vacuum to improve the signal-to-noise ratio(SNR) and the boil-off rate of liquid helium(LHe). The axial type first-order gradiometer was fabricated with a double relaxation oscillation SQUID(DROS) sensor which was directly connected with a pickup coil. The neck space of LHe dewar was made to be smaller than that of a conventional dewar, but the LHe boil-off ratio appeared to increase. To reduce the temperature of low Tc SQUID sensor and pickup coil to 9 K, a metal shield made of, such as copper, brass or aluminum, have been usually used for thermal transmission. But the metal shield exhibited high thermal noise and eddy current fluctuation. We quantified the thermal noise and the eddy current fluctuation of metal. In this experiment, we used the bobbin which was made of an alumina to wind Nb superconductive wire for pickup coil and the average noise of coil-in-vacuum type MEG system was $3.5fT/Hz^{1/2}$. Finally, we measured the auditory evoked signal to prove the reliability of coil-in-vacuum type MEG system.

  • PDF

광촉매가 코팅된 플라스틱 광섬유을 이용한 VOC 광분해반응 (Photodegradation of VOCs by Using TiO$_2$-Coated POF)

  • Ha, Jin-Wook;Joo, Hyun-Ku
    • 한국산학기술학회논문지
    • /
    • 제4권3호
    • /
    • pp.199-203
    • /
    • 2003
  • In this study plastic optical fibers (POFs) were considered as light-transmitting media and substrates for the potential use in photocatalytic environmental purification system. After the characteristics of POFs in terms of light transmittance and absorption were determined at the beginning, the further investigation was performed through the photocatalytic degradation of trichloroethylene (TCE), iso-propanol and etc. with TiO$_2$-coated optical fiber reactor systems (POFR). It is concluded that the use of POFs is preferred to quartz optical fibers (QOFs) since the advantages such as ease of handling, lower cost, relatively reasonable light attenuation at the wavelength of near 400nm can be obtained. Various geometrical reactor shapes have been constructed and applied for the last one and half years. For the use of POF in water phase treatment, however, more detailed scientific and engineering aspects should be envisaged. This case requires a suitable mixture to obtain more stable and innocuous immobilization of photocatalyst on POF. To overcome this disadvantage, metal-organic chemical vapor deposition (MOCVD) was conducted in a fluidized bed to deposit thin films of titania on glass and alumina beads. Those can be used as photocatalysis for the removal of pollutants especially in liquid phases.

  • PDF

핀-핀 형 전극의 전기-수력학 프린팅에서 전극 직경이 미세 세라믹 패턴 형성에 미치는 영향 (Effect of Electrode Diameter on Pine Ceramic Pattern Formed by Using Pin-To-Pin Type Electro-Hydrodynamic Printing)

  • 이대영;유재훈;류태우;황정호;김용준
    • 정보저장시스템학회논문집
    • /
    • 제1권1호
    • /
    • pp.108-114
    • /
    • 2005
  • The generation of fine relics of suspensions is a significant interest as it holds the key to the fabrication of electronic devices. These processes offer opportunities for miniaturization of multilayer circuits, for production of functionally graded materials, ordered composites and far small complex-shaped components. Some novel printing methods of depositing ceramic and metal droplets were suggested in recent years. In an electro-hydrodynamic printing, the metallic capillary nozzle can be raised to several kilovolts with respect to the infinite ground plate or pin-type electrode positioned a few millimeters from the nozzle tip. Depending on the electrical and physical properties of the liquid, for a given geometry, it Is possible to generate droplets in any one of three modes, dripping, cone-jet and multi-jet. In this experiment, an alumina suspension flowing through a nozzle was subjected to electro-hydrodynamic printing using pin-type electrodes in the cone-jet mode at different applied voltages. The pin-type electrodes of 1, 100, 1000${\mu}m$ in diameter were used to form fine ceramic patterns onto the substrates. Various feature sizes with applied voltages and electrode diameters were measured. The feature sizes increased with the electrode diameter and applied voltages. The feature size was as fine as $30 {\mu}m$.

  • PDF

급속금형제작 (2) : 알루미늄 분말 혼합수지를 이용한 간이형 제작과 그 특성 (Rapid Tooling (2) : Al Powder Filled Resin Tooling and Its Characteristics)

  • 김범수;임용관;배원병;정해도
    • 한국정밀공학회지
    • /
    • 제15권8호
    • /
    • pp.39-45
    • /
    • 1998
  • In the previous study. the powder casting was attempted as the rapid tooling. The powder casting was the process to cast dry powder into the casting mold transferred from R/P model and infiltrate the liquid binder to solidify the powder. And then, the melted copper was infiltrated to control the shrinkage rate of the final mold Conseqently, the shrinkage rate was under 0.1% through that process. The mechanical characteristic was also excellent. Generally, in the slurry casting, the alumina powder and the water soluble phenol were mainly used. However, the mechanical property of the phenol was not good enough to apply to molds directly. In this study, aluminium powder filled with epoxy is applicated to the slurry casting to solve these problems. The mechanical and thermal properties are better than phenol because the epoxy is the thermosetting resin. We achieved a successful result that the shrinkage rate is shortened about 0.047%. Futhermore, the manufacturing time and cost savings are significant. Finally, we assume that the developing possibility of this process is very optimistic.

  • PDF

분자체 5A를 이용한 n-헥산의 분리와 HPLC급으로의 정제에 관한 연구 (A Study on the Separation of n-Hexane by Molecular Sieve 5A and the Purification for HPLC use)

  • 최범석;김영만;김선태
    • 분석과학
    • /
    • 제6권1호
    • /
    • pp.21-27
    • /
    • 1993
  • 54% 순도의 공업용 n-헥산을 HPLC급으로 분리, 정제하였다. 분별증류법으로 분리하기 어려운 methylcyclopentane, 2-methylpentane, 그리고 3-methylpentane 등은 molecular aieve 5A를 이용한 액체-고체 크로마토그래피법으로 분리하였다. HPLC 용매로서 엄격히 규제받는 UV와 형광불순물은 알루미나와 실리카겔을 이용한 흡착법으로 정제하였다. 이와 같은 방법으로 n-헥산을 정제함으로써 수분, 색도(APHA), 산도, 증발잔류물, 황 및 thiophene 등의 불순물 항목을 모두 HPLC급의 규격까지 낮출 수 있었다.

  • PDF

Characteristics of debris resulting from simulated molten fuel coolant interactions in SFRS

  • E. Hemanth Rao;Prabhat Kumar Shukla;D. Ponraju;B. Venkatraman
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.283-291
    • /
    • 2024
  • Sodium cooled Fast Reactors (SFR) are built with several engineered safety features and hence a severe accident such as a core melt accident is hypothetical with a probability of <10-6/ry. However, in case of such accidents, the mixture of the molten fuel and structural materials interacts with sodium. This phenomenon is known as Molten Fuel Coolant Interaction (MFCI) and results in fragmentation of the melt due to various instabilities. The fragmented particles settle as a debris bed on the core catcher at the bottom of the reactor vessel, and continue to generate decay heat. Characteristics of the debris particles play a vital role in heat transfer from the bed and need thorough investigation. The size, shape, and physical state of the debris depend on the associated fragmentation mechanism, superheating of the melt, and sodium temperature. Experiments have been conducted by releasing simulated corium, a molten mixture of alumina and iron generated by the aluminothermy process at ~2400 ℃ into liquid sodium, to study the fragmentation phenomena. After the experiment, the fragmented debris was retrieved and the particle size distribution was determined by sieve analysis. The debris was subjected to microscopic investigation for obtaining morphological characteristics. Based on the characteristics of debris, an attempt has been made to assess of fragmentation mechanism of simulated corium in sodium.

Luminous Characteristics of Transparent Field Emitters Produced by Using Ultra-thin Films of Single Walled Carbon Nanotubes

  • Jang, Eun-Soo;Goak, Jeung-Choon;Lee, Han-Sung;Lee, Seung-Ho;Lee, Nae-Sung
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.31.1-31.1
    • /
    • 2009
  • Carbon nanotubes (CNTs) are attractive material because of their superior electrical, mechanical, and chemical properties. Furthermore, their geometric features such as a large aspect ratio and a small radius of curvature at tip make them ideal for low-voltage field emission devices including backlight units of liquid crystal display, lighting lamps, X-ray source, microwave amplifiers, electron microscopes, etc. In field emission devices for display applications, the phosphor anode is positioned against the CNT emitters. In most case, light generated from the phosphor by electron bombardment passes through the anode front plate to reach observers. However, light is produced in a narrow depth of the surface of the phosphor layer because phosphor particles are big as much as several micrometers, which means that it is necessary to transmit through the phosphor layer. Hence, a drop of light intensity is unavoidable during this process. In this study, we fabricated a transparent cathode back plate by depositing an ultra-thin film of single walled CNTs (SWCNTs) on an indium tin oxide (ITO)-coated glass substrate. Two types of phosphor anode plates were employed to our transparent cathode back plate: One is an ITO glass substrate with a phosphor layer and the other is a Cr-coated glass substrate with phosphor layer. For the former case, light was radiated from both the front and the back sides, where luminance on the back was ~30% higher than that on the front in our experiments. For the other case, however, light was emitted only from the cathode back side as the Cr layer on the anode glass rolled as a reflecting mirror, improving the light luminance as much as ~60% compared with that on the front of one. This study seems to be discussed about the morphologies and field emission characteristics of CNT emitters according to the experimental parameters in fabricating the lamps emitting light on the both sides or only on the cathode back side. The experimental procedures are as follows. First, a CNT aqueous solution was prepared by ultrasonically dispersing purified SWCNTs in deionized water with sodium dodecyl sulfate (SDS). A milliliter or even several tens of micro-liters of CNT solution was deposited onto a porous alumina membrane through vacuum filtration. Thereafter, the alumina membrane was solvated with the 3 M NaOH solution and the floating CNT film was easily transferred to an ITO glass substrate. It is required for CNT film to make standing CNTs up to serve as electron emitter through an adhesive roller activation.

  • PDF

SiO2와 Al2O3 첨가가 지르콘의 기계적 특성에 미치는 영향 (Effect of Adding SiO2 and Al2O3 on Mechanical Properties of Zircon)

  • 조범래
    • 한국재료학회지
    • /
    • 제21권4호
    • /
    • pp.220-224
    • /
    • 2011
  • Zircon has excellent thermal, chemical, and mechanical properties, but it is hard to make a dense sintered product because of dissociation during the sintering process. This study analyzes how the addition of $SiO_2$ and $Al_2O_3$ affects the mechanical properties of sintered zircon, particularly in regards to reducing the thermal dissociation and improving the mechanical properties of $ZrSiO_4$. Zircon specimens containing different amounts of $SiO_2$ and $Al_2O_3$ were prepared and sintered to observe how the mechanical properties of $ZrSiO_4$ changed according to the differing amount of $SiO_2$ and $Al_2O_3$. The $ZrSiO_4$ that was used for the starting material was ground by ball mill to an average particle size of 3 ${\mu}m$. The $SiO_2$ and $Al_2O_3$ that was used for additives were ground to an average particle size of 3 ${\mu}m$ and 0.5 ${\mu}m$, respectively. Adding $SiO_2$ resulted in transformation in the liquid phase at high temperatures, which had little effect on suppressing the thermal dissociation but enhanced the mechanical properties of $ZrSiO_4$. When $Al_2O_3$ was added, the mechanical properties of $ZrSiO_4$ decreased due to the formation of pores and abnormal grains in the microstructure of the sintered zircon.

LPS-SiC 세라믹스의 제조특성에 미치는 $SiQ_2$ 입자크기의 영향 (Effects of $SiO_2$ Particle-size on Fabrication Properties of LPS-SiC Ceramics)

  • 김성훈;윤한기;김부안
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.162-165
    • /
    • 2006
  • In this study, Liquid Phase Sintered SiC (LPS-SiC) was fabricated by hot pressing method with $\beta$-SiC powder whose a particle size is 30nm and less on the average in argon condition at 1780 and $1800^{\circ}C$ under 20MPa. Alumina ($Al_2O_3$), yttria ($Y_2O_3$) and silica ($SiO_2$) were used for sintering additives. To investigate effects of particle-size and temperature on $SiO_2$, LPS-SiC was fixed $Al_2O_3$, $Y_2O_3$ and then particle-size of $SiO_2$ were changed as two kinds. The system of particle-size and temperature on sintering additives which affects a property of sintering os well os the influence depending on particle-size and temperature of sintering additives were investigated by measurement of sintering properties. Such as measurement of sintering density, vikers hardness and observing of microstructure were investigated to make sure of the optimum condition which is about matrix of $SiC_f/SiC$ composites. Base on the composition of sintering additives, microstructure and sintering property correlation, the effect of particle-size of sintering additives are discussed. An experimental method to investigate the dynamic characteristics of bums in extreme environmental condition is established.

  • PDF

비 표면적 큰 코발트계 담지촉매를 사용한 피셔-트롭스 반응에 의한 탄화수소의 제조에 관한 연구 (A Study on the Synthesis of Hydrocarbon by Fisher-Tropsch Synthesis over Cobalt Catalysts with High Surface Area Support)

  • 김철웅;김유성;정순용;정광은;채호정;이관영
    • 한국응용과학기술학회지
    • /
    • 제26권3호
    • /
    • pp.279-287
    • /
    • 2009
  • Fisher-Tropsch synthesis for the production of hydrocarbon from syngas was investigated on 20% cobalt-based catalysts (20% Co/HSA, 20% Co/Si-MMS), which were prepared by home-made supports with high surface areas such as high surface alumina (HSA) and silica mesopores molecular sieve (Si-MMS). In the gas phase reaction by syngas only, 20% Co/Si-MMS catalyst was shown in higher CO conversion and lower carbon dioxide formation than 20% Co/HSA, whereas the olefin selectivity was higher in 20% Co/HSA than in 20% Co/Si-MMS. In the effect of n-hexane added in syngas, the selectivities of $C_{5+}$ and olefin were increased by comparing the supercritical phase reaction with the gas phase reaction in addition to reduce unexpected methane and carbon dioxide.