• Title/Summary/Keyword: liquefied natural gas

Search Result 332, Processing Time 0.033 seconds

Proportional Flow Control Valve with PZT Actuator (압전식 비례제어밸브)

  • Yun, So-Nam;Kim, Chan-Yong;Ham, Young-Bog;Yoon, Seok-Jin;Lee, Kyung-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.11 s.282
    • /
    • pp.758-762
    • /
    • 2005
  • Gas valve for domestic use is used for flow control of LPG (Liquefied Petroleum Gas) or LNG (Liquefied Natural Gas) of which pressure is about $200\;mmH_{2}O(\fallingdotseq0.0196\;[bar])$. Currently, two kinds of valves such as rotary type and button type are widely used in many applications. But, these valves have some problems that they are not controllable and reliable. Piezo actuation combined with modem microelectronics provides a reliable, quiet, low energy, infinitely adjustable gas valve. In this paper, gas valve using piezo actuator which are bimorph and a circle type was studied. Also, Prototype for gas valve was manufactured and characteristics of the prototype gas valve were analyzed.

Design and Analysis of Desalination Process using LNG Cold Energy (LNG 냉열 기반 해수 담수화 공정의 설계 및 분석)

  • Lee, Sang Hyun;Park, Kyungtae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.371-376
    • /
    • 2022
  • Liquefied natural gas undergoes a process of vaporization to be supplied as city gas, which generates about 800 kJ/kg of cold energy. Currently, all of this cold energy is being dumped into the sea, resulting in a very serious energy waste from the point of view of energy recycling. In this study, a seawater desalination process that can utilize the wasted cold energy was proposed, and this process was optimized to analyze the specific power consumption and economic feasibility. As a result, the specific energy consumption of the proposed process was calculated as -5.2kWh/m3, and the production cost of the pure water was 0.148 USD/m3, confirming that it is superior to any other process developed so far.

Experimental Analysis of Boil-Off Gas Occurrence in Independent Liquefied Gas Storage Tank (독립형 액화가스 저장탱크의 BOG 발생에 대한 실험적 분석)

  • Cha, Seung-Joo;Bae, Jin-Ho;Lee, Dong-Ha;Kim, Tae-Wook;Kim, Seul-Kee;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.380-385
    • /
    • 2018
  • With the tightening of environmental regulations (i.e., IMO Tier III), natural gas (NG) has been spotlighted as an eco-friendly fuel with few air pollutants other than nitrogen oxides (NOx) and sulfur oxides (SOx). For reasons of economic efficiency, it is mainly stored and transported in a liquid state at $-163^{\circ}C$, which is a cryogenic temperature, using a liquefied gas storage tank. Accordingly, it is necessary to reduce the boil-off gas (BOG) occurrence due to the heat flow according to the temperature difference between the inside and outside of the storage tank. Therefore, in this study, a BOG measurement test on an independent-type storage tank made up of SUS304L was carried out. The test results showed the tendency for BOG occurrence according to the temperature under different filling ratios.

The pressure drop characteristics in LNG heat exchanger of cryogenic cascade refrigeration cycle (초저온 캐스케이드 냉동사이클의 LNG 열교환기 압력강하 특성)

  • Yoon, J.I.;Choi, K.H.;Kwag, J.W.;Son, C.H.;Baek, S.M.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.376-381
    • /
    • 2012
  • Natural gas is converted in to LNG by chilling and liquefying the gas to the temperature of $-162^{\circ}C$, when liquefied, the volume of natural gas is reduced to 1/600th of its standard volume. This gives LNG the advantage in transportation. The pressure dorp of the cascade liquefaction cycle was investigated and simulated using HYSYS software. The simulation results showed that the pressure drop in the LNG heat exchanger is set to 50 kPa considering the increase in the compressor work of cryogenic cascade liquefaction cycle.

  • PDF

Numerical Analysis on the Increasing Temperature Characteristics of Vaporizer Fin for Liquefied Natural Gas with Super Low Temperature (초저온 액화 천연 가스용 기화기 핀의 승온 특성에 관한 수치 해석)

  • Yi, C.S.;Kong, T.W.;Lee, H.D.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.81-87
    • /
    • 2005
  • This study is numerical analysis on the increasing temperature characteristics of vaporizer fin for liquefied natural gas with super low temperature. Existing LNG vaporizers use the direct contact heat transfer mode where the extreme super low temperature LNG of $-162^{\circ}C$ flows inside of the tubes and about $20^{\circ}C$air flows on outside of the fin. Recently, the vaporizers with great enhanced performance compared to conventional type have been developed to fulfill these requirements. The vaporizing characteristic of LNG vaporizer with air as heat source has a fixed iced. These characteristic cause a low efficiency in vaporizer, total plant cost and installing space can be increased. The vaporizing characteristics of LNG via heat exchanger with air are analytically studied for an air heating type vaporizer. This study is intended to supply the design data for the domestic fabrication of the thickness and angle vaporizer fin. Governing conservation equations for mass, momentum and energy are solved by STAR-CD based on an finite volume method and SIMPLE algorithm. Calculation parameter is fin thickness, setup angle and LNG temperature. If the vaporization performance of the early stage and late stage of operating is considered, the case of ${\phi}=90^{\circ}$ was very suitable. In this paper was estimated that the heat transfer was most promoted in case of THF=2mm.

  • PDF

The New Trend of Propulsion and BOG Handling System from LNGCs (최근 LNG선의 추진 및 BOG 처리장치의 동향)

  • Kim, M.E.;Lee, K.W.;Lee, Y.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.940-945
    • /
    • 2005
  • In recent years, the LNGC fleet is expanded unprecedentedly. Ship's owners and shipbuilders are focusing on technology and reliability of new propulsion system from economical, environmental and safety angles. This paper give describes the new trend of propulsion system and boil off gas handling system from LNG carriers.

  • PDF

Study on the Comparison of New and Used Reliquefaction System of Boil-Off-Gas by LNG Cold Energy (냉열을 이용한 LNG 증발기체 BOG 재액화 신공정과 기존공정에 관한 비교연구)

  • Lee, Dong-Hyuck;Jang, Chang-Bong;Jung, Sang-Yong;Kim, Jung-Hwan;Lee, Heon-Seok;Kim, Bum-Su;Ko, Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.1
    • /
    • pp.42-46
    • /
    • 2010
  • BOG(Boil Off Gas) is formed about 0.05 vol%/day from LNG(Liquefied Natural Gas) tanks of LNG receiving terminal. To recycle the BOG using direct contacting, Previously the quantities of LNG and BOG is mixed at the ratio of 11:1 by mass. However simple this process uses, there is the difficulty of processing operation resulted from decrease of using LNG in summer. To complement these shortcomings, Advantages of the process are investigated by comparison of cost and analysis of the indirect contact method using LNG cold energy. It was studied that principles and types of development using LNG cold energy which is abandoned in the carburettor and found how to contact each to find the appropriate cold energy development process. Therefore, in this research, the indirect contact method will be investigated the feasibility of a comparative analysis by using HYSYS.

Parametric Investigation of BOG Generation for Ship-to-Ship LNG Bunkering

  • Shao, Yude;Lee, Yoon-Hyeok;Kim, You-Taek;Kang, Ho-Keun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.352-359
    • /
    • 2018
  • As a fuel for ship propulsion, liquefied natural gas (LNG) is currently considered a proven and reasonable solution for meeting the IMO emission regulations, with gas engines for the LNG-fueled ship covering a broad range of power outputs. For an LNG-fueled ship, the LNG bunkering process is different from the HFO bunkering process, in the sense that the cryogenic liquid transfer generates a considerable amount of boil-off gas (BOG). This study investigated the effect of the temperature difference on boil-off gas (BOG) production during ship-to-ship (STS) LNG bunkering to the receiving tank of the LNG-fueled ship. A concept design was resumed for the cargo/fuel tanks in the LNG bunkering vessel and the receiving vessel, as well as for LNG handling systems. Subsequently, the storage tank capacities of the LNG were $4,500m^3$ for the bunkering vessel and $700m^3$ for the receiving vessel. Process dynamic simulations by Aspen HYSYS were performed under several bunkering scenarios, which demonstrated that the boil-off gas and resulting pressure buildup in the receiving vessel were mainly determined by the temperature difference between bunkering and the receiving tank, pressure of the receiving tank, and amount of remaining LNG.

A Simulation Study on the Cascade Refrigeration Cycle for the Liquefaction of the Natural Gas [2]: An Application to the Multistage Cascade Refrigeration Cycle (천연가스 액화를 위한 캐스케이드 냉동사이클의 전산모사에 대한 연구 [2]: 다단 캐스케이드 냉동 사이클에 적용)

  • Cho, Jung-Ho;Kim, Yu-Mi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.1013-1019
    • /
    • 2011
  • In this paper, simulation works for a multi-stage cascade refrigeration cycle using propane, ethylene and methane as refrigerants have been performed for the liquefaction of natural gas using Peng-Robinson equation of state built-in PRO/II with PROVISION release 8.3. The natural gas feed compositions were supplied from Korea Gas Corporation and the flow rate was assumed to be 5.0 million tons per annual. Supply temperature for propane refrigerant was fixed as $-40^{\circ}C$, that for ethylene refrigerant as $-95^{\circ}C$, and that for methane refrigerant as $-155^{\circ}C$. For the multi-stage refrigeration cycle, three-stage refrigeration was assumed for propane refrigeration cycle, two-stage refrigeration for ethylene refrigeration cycle and three-stage refrigeration for methane refrigeration cycle. Natural gas was finally cooled and liquefied to $-162^{\circ}C$ by Joule-Thomson expansion. Conclusively, 91.71% by mole of the natural gas liquefaction ratio was obtained through a cascade refrigeration cycle and Joule-Thomson expansion and 0.433 kW of compression power was consumed for the liquefaction of 1.0 kg/hr of natural gas.