• Title/Summary/Keyword: liquefied

Search Result 770, Processing Time 0.027 seconds

Initial Strength Characteristics of Cement Paste Added with Nitric Acid Neutralized Red Mud (질산 중화 레드머드를 첨가한 시멘트 페이스트의 초기강도 특성)

  • Kang, Hye Ju;Kang, Suk Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.70-71
    • /
    • 2021
  • An increasing amount of red mud (RM) is being generated globally with the growth in alumi-num production. To avoid the RM becoming a pollutant, methods for effectively recycling RM at a low cost are being investigated. This study proposes a method for recycling RM as a construc-tion material. The cement paste with neutralized liquefied red mud had higher compressive strength than that of plain cement paste and cement paste with liquefied red mud without neutralization at 1 d of aging; this indicates that nitric acid neu-tralization increases the early-age strength.

  • PDF

Deep learning neural networks to decide whether to operate the 174K Liquefied Natural Gas Carrier's Gas Combustion Unit

  • Sungrok Kim;Qianfeng Lin;Jooyoung Son
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.383-384
    • /
    • 2022
  • Gas Combustion Unit (GCU) onboard liquefied natural gas carriers handles boil-off to stabilize tank pressure. There are many factors for LNG cargo operators to take into consideration to determine whether to use GCU or not. Gas consumption of main engine and re-liquefied gas through the Partial Re-Liquefaction System (PRS) are good examples of these factors. Human gas operators have decided the operation so far. In this paper, some deep learning neural network models were developed to provide human gas operators with a decision support system. The models consider various factors specially into GCU operation. A deep learning model with Sigmoid activation functions in input layer and hidden layers made the best performance among eight different deep learning models.

  • PDF

Insulation Performance and BOR of Pressurized Large-capacity Liquid Hydrogen Storage Tank (가압식 대용량 액체수소 저장탱크의 단열 성능과 BOR)

  • HEUNG SEOK SEO;YEONGBUM LEE;DONGHYUK KIM;CHANGWON PARK
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.650-656
    • /
    • 2023
  • In order to efficiently control boil-off rate of a liquefied hydrogen tank, the important thing is to maintain an appropriate vacuum level. however, compared to small and medium-sized storage tank, it is very difficult to create and maintain vacuum in large-capacity storage tanks. In this study, we aim to determine the target level of future large-capacity storage tank technology development and secure basic data on performance test methods by analyzing the corelation between evaporation gas and thermal conductivity of liquefied hydrogen storage tanks.

A Study on the Efficiency Improvement of the Power Generation Process Using New Working Fluids Composed of Methane, Ethylene, Ethane, and Propane and the Cold Heat Contained in the Liquefied Natural Gas (메탄, 에틸렌, 에탄 및 프로판으로 구성된 새로운 작동 유체와 액화 천연가스의 냉열을 활용한 발전 공정의 효율 향상에 대한 연구)

  • JUNGHO CHO
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.3
    • /
    • pp.318-323
    • /
    • 2024
  • In this paper, computer modeling works have been performed for the power generation Rankine cycle using new working fluids and liquefied natural gas (LNG) cold heat. PRO/II with PROVISION released January 2023 from AVEVA company was used, and Peng-Robinson equation of the state model with Twu's alpha function was selected for the modeling of the power generation cycle. Optimal working fluid composition was determined to maximize LNG cold heat to increase power generation efficiency and net power production.

Determination of the mole fractions of ethylene oxide and freons in medical liquefied gas mixture by GC/AED (GC/AED를 이용한 의료용 액화혼합가스 중 산화에틸렌 및 프레온 가스류의 몰분율 측정)

  • Kim, Hyunjoo;Kim, Dalho;Lim, Arang;Lee, Taeck-Hong;Kim, Jin Seog
    • Analytical Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.382-387
    • /
    • 2012
  • Ethylene oxide ($C_2H_4O$, EtO) is used as a raw material for the production of ethylene glycol and other industrially important material such as ethanolamines and also used as a disinfecting agent. It is applied for gas-phase sterilization of thermally sensitive medical equipment, and for processing of storage facilities as a mixture with fluorinated hydrocarbon. In this perspective, accurate determination of the mole fractions of components in the liquefied gas mixture is required for the quality control and safety of production and use. Each component of the liquefied gas mixture has different chemical and physical properties such as vapor pressure and boiling point. Therefore, we can suppose that analytical results can be different according to the introduction method for the gas phase of upper layer, or for the liquid phase of lower layer in gas cylinder. In this study, we designed a new on-line sample injection device for the liquefied gas mixture in liquid or gas state, and applied to the analysis of liquefied gas mixture of ethylene oxide and fluorinated hydrocarbons by GC/AED (gas chromatograph-atomic emission detector). We studied performance of AED, and effect of sample introduction and selected wavelength to the accuracy and repeatability of analytical results.

A Study on the Necessity to Revise the Standards for the Main Dimensions of Liquefied Gas Carriers (액화가스운반선 주요치수에 대한 기준 개정 필요성에 관한 연구)

  • Yun, Gwi-ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.810-819
    • /
    • 2020
  • Recently, the demand for liquefied gas has been increasing for various reasons, including environmental problems, and as a result, transportation of liquefied gas through a ship is increasing, and several terminals are also being constructed to accommodate it. The size of the terminal to be constructed shall follow the result if the target ship is clearly determined. Otherwise, the size of the vessel that the terminal intends to accept shall be determined, and then, the dimensions of the vessel given in the regulations or standards shall be used. In this regard, it was found that the main dimensions of the proposed vessels are substantially different from those actually operating and the standard for large-sized vessels has not been established in the process of determining the size of the target vessel by using the "Port and Fishing Port Design Standards" and commentary(2017), which recently is most commonly used as port design criteria in order to construct the liquefied gas terminal. Because of these problems, a revision of the standard for the major dimensions of liquefied gas carriers was proposed through an analysis of the current status of ships in service, as there could be many differences between interested parties in determining the size of the target ships and terminals and evaluating the safety of terminals. It is expected that the proposed revision will be used as a more appropriate and realistic criterion for determining the size of ships and terminals in the future and will prevent unnecessary terminal construction costs.

Effect of Liquefied Digestive Medicine on the Surface of Composite Resin

  • Kim, Min-Young;Lim, Hee-Jung;Kim, Ha-Eun;Kim, Hyun-Jeong;Yu, Hye-Kang;Choi, Soo-Jin;Lim, Do-Seon
    • Journal of dental hygiene science
    • /
    • v.22 no.1
    • /
    • pp.20-29
    • /
    • 2022
  • Background: The purpose of this study is to investigate the effect of liquefied digestive medicines on the composite resin surface. Methods: Three types of liquefied digestive medicines (Gashwalmyeongsu, Wicheongsu, and Saengrokcheon) were selected as experimental groups, Samdasoo and Chamisul as negative controls, and Trevi as positive controls were selected to measure pH and titratable acidity. The samples filled with resin at acrylic were made total 300, 50 per group. To evaluate the erosion risk of the composite resin, the specimens were immersed in a liquefied medicine for 1, 3, 5, 15, and 30 minutes, and then the surface microhardness was measured using the Vickers Hardness Number, and the surface change was observed with scanning electron microscope (SEM). Results: The average pH of the three liquefied medicine was 3.75±0.30, the Saengrokcheon was the lowest at 3.45±0.01, and the Trevi was 4.66 and Samdasoo and Chamisul were 7.40 and 8.58, respectively. The amount of NaOH reaching pH 5.5 and 7.0 was the lowest in the order of Trevi, Gashwalmyeongsu, Wicheongsu, and Saengrokcheon. The largest surface hardness reduction value was shown in Gashwalmyeongsu (-11.85±3.73), followed by Saengrokcheon (-9.79±3.11) and Wicheongsu (-8.28±2.83), and Samdasoo (-0.84±1.56) and Chamisul (-6.24±0.42) had relatively low surface hardness reduction values. However, Trevi (-16.67±5.41), a positive control group containing carbonic acid, showed a higher decrease in surface hardness than the experimental group. As a result of observation with SEM, experimental group and positive control group, showed rough surfaces and irregular cracks, and negative control groups showed smooth patterns similar to before immersion. Conclusion: The liquefied digestive medicine with low pH could weaken the composite resin surface, and the carbonic acid component could more effect on the physical properties of the composite resin than pH.

A Study on Quantitative Risk Presentation of LNG Station (LNG충전시설의 위험도 표현에 관한 연구)

  • Ko, Jae-Wook;Yoo, Jin-Hwan;Kim, Bum-Su;Lee, Heon-Seok;Kim, Min-Seop
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.1
    • /
    • pp.61-67
    • /
    • 2009
  • There are lots of energy facilities using gas(storage facility, compressed gas pipe, station, tank lorry) on the domestic. These major gas facilities cause major accidents associated with fire, explosion, toxic and etc. With the increased interest in reducing air pollution, supply of natural gas for gas vehicles is increasing. Thus, the number of establishments of LNG (Liquefied Natural Gas) and CNG(Compressed Natural Gas) stations is increasing as well. However, due to major gas accidents such as the fire and explosion accident of a Buchen LPG (Liquefied Petroleum Gas) station, it is difficult to establish a new station. In this research, we present quantitative risk assessment for LCNG;LNG multi-station and compare it result against individual risk criteria of HSE.

  • PDF

Centrifuge modelling of pile-soil interaction in liquefiable slopes

  • Haigh, Stuart K.;Gopal Madabhushi, S.P.
    • Geomechanics and Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-16
    • /
    • 2011
  • Piles passing through sloping liquefiable deposits are prone to lateral loading if these deposits liquefy and flow during earthquakes. These lateral loads caused by the relative soil-pile movement will induce bending in the piles and may result in failure of the piles or excessive pile-head displacement. Whilst the weak nature of the flowing liquefied soil would suggest that only small loads would be exerted on the piles, it is known from case histories that piles do fail owing to the influence of laterally spreading soils. It will be shown, based on dynamic centrifuge test data, that dilatant behaviour of soil close to the pile is the major cause of these considerable transient lateral loads which are transferred to the pile. This paper reports the results of geotechnical centrifuge tests in which models of gently sloping liquefiable sand with pile foundations passing through them were subjected to earthquake excitation. The soil close to the pile was instrumented with pore-pressure transducers and contact stress cells in order to monitor the interaction between soil and pile and to track the soil stress state both upslope and downslope of the pile. The presence of instrumentation measuring pore-pressure and lateral stress close to the pile in the research described in this paper gives the opportunity to better study the soil stress state close to the pile and to compare the loads measured as being applied to the piles by the laterally spreading soils with those suggested by the JRA design code. This test data shows that lateral stresses much greater than one might expect from calculations based on the residual strength of liquefied soil may be applied to piles in flowing liquefied slopes owing to the dilative behaviour of the liquefied soil. It is shown at least for the particular geometry studied that the current JRA design code can be un-conservative by a factor of three for these dilation-affected transient lateral loads.