• Title/Summary/Keyword: liquefaction water

Search Result 160, Processing Time 0.026 seconds

A Fundamental Study on Vibrated Crushed-stone Pile for the Improvement of Liquefaction Resistance (액상화 방지를 위한 진동쇄석말뚝에 관한 기초적 연구)

  • 천병식
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.105-111
    • /
    • 2000
  • If a saturate sand is subjected to ground vibrations it tends to compact and decrease in volume. if drainage is unable to occur the tendency to decrease in volume results in an increase in pore water pressure and if the pore water pressure build up to the point at which it is equal to the overburden pressure the effective stress becomes zero the sand loses its strength completely. This phenomenon is called "Liquefaction" It is associated primarily but not exclusively with saturated cohesion soils. The attention and study on liquefaction have been growing since the earthquake in Niigita Japan in 1964. Many researchers on liquefaction effect have been carried out in many countries under the potential influence of earthquake including Japan. However little research on liquefaction has been reported in Korea because Korea has been considered to be safe from earthquake. The term "liquefaction" is only known among geotechnical engineers,. In this paper overview of liquefaction and the evaluation on the applicability of vibrated crushed-stone pile as a liquefaction prevention method are presented.ethod are presented.

  • PDF

A Study on Prediction of the Liquefaction Behavior of Saturated Sandy Soils Using DSC Constitutive Equation (DSC구성방정식을 이용한 포화사질토의 액상화 거동 예측)

  • 박인준;김수일;정철민
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.201-208
    • /
    • 2000
  • In this study, the behavior of saturated sandy soils under dynamic loads - pore water pressure and effective stress - was investigated using Disturbed State Concept(DSC) model. The model parameters are evaluated from laboratory test data. During the process of loading and reverse loading, DSC model is utilized to trace strain-hardening and cyclic softening behavior. The procedure of back prediction proposed in this study are verified by comparing with laboratory test results. From the back prediction of pore water pressure and effective mean pressure under cyclic loading, excess pore water pressure increases up to initial effective confining pressure and effective mean pressure decrease close to zero in good greement with laboratory test results. Those results represent the liquefaction of saturated sandy soils under dynamic loads. The number of cycles at initial liquefaction using the model prediction is in good agreement with laboratory test results. Therefore, the results of this study state that the liquefaction of saturated sandy soils can be explained by the effective tress analysis.

  • PDF

EFFECT OF DISPLACEMENT METHOD ON SAND BED LIQUEFACTION UNDER OSCILLATING WATER PRESSURE

  • HoWoongShon
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.3
    • /
    • pp.131-137
    • /
    • 2003
  • In this paper the liquefaction of sand bed under oscillating water pressure are treated as a basic study of the prevention works against the scouring around the hydraulic structures. The results of the former resurch show that the occurrence of the liquefaction depends on both properties of the oscillating water pressure and of the sand layer. Considering the latter properties, that is , the resistivity against the liquefaction increases with the increase of the permeability of the sand bed, we propose the displcement method as one of the prevention works, which is a method to displace the upper layer of the sand bed by the sand with large permeability. The effects of this method are investigated theoretically and experimentally. By the experimental study, it is shown that the proposed displacement method has the apparent effect to prevent the liquefaction. The experimental results are explained fairly well by the theoretical analysis based on the theory of the flow through the elastic porous media.

  • PDF

Development of Multi-hazard Fragility Surface for Liquefaction of Levee Considering Earthquake Magnitude and Water Level (수위와 지진을 고려한 제방의 액상화에 대한 복합재해 취약도 곡면 작성)

  • Hwang, Ji-Min;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.6
    • /
    • pp.25-36
    • /
    • 2018
  • Soil liquefaction is one of the types of major seismic damage. Soil liquefaction is a phenomenon that can cause enormous human and economic damages, and it must be examined before designing geotechnical structures. In this study, we proposed a practical method of developing a multi-hazard fragility surface for liquefaction of levee considering earthquake magnitude and water level. Limit state for liquefaction of levee was defined by liquefaction potential index (LPI), which is frequently used to assess the liquefaction susceptibility of soils. In order to consider the uncertainty of soil properties, Monte Carlo Simulation based probabilistic analysis was performed. Based on the analysis results, a 3D fragility surface representing the probability of failure by soil liquefaction as a function of the ground motion and water level has been established. The prepared multi-hazard fragility surface can be used to evaluate the safety of levees against liquefaction and to assess the risk in earthquake and flood prone areas.

Studies on the Processing of Rapid- and Low Salt-Fermented Liquefaction of Sardine (Sardinops melanoslicta)(III) - Effect of Pretreatment Method on Water Adding, Heating, and NaCl Added to the Fermented Liquefaction of Chopped Whole Sardine - (저식염 속성 정어리 발효 액화물 가공에 관한 연구(III) - 마쇄육의 발효 액화에 미치는 가수.가온 전처리 및 식염첨가 방법의 영향 -)

  • Park, Choon-Kyu
    • Journal of the Korean Society of Food Culture
    • /
    • v.15 no.2
    • /
    • pp.95-100
    • /
    • 2000
  • This study was attempt to improve the quality of rapid- and low salt-fermented liquefaction of sardine (Sardinops melanoslicta). Effect of pretreatment methods such as water adding, heating, and intermittent NaCl adding on fermented liquefaction of chopped whole sardine were investigated. The divisions of the experimental samples by pretreatment methods were as follows; Sample A (water adding and heating): chopped whole sardine adding 20% water and then adding 3 and 5% NaCl consecutively at the intervals of 3 and 6 hrs during heating for 9 hrs at $50^{\circ}C$ and then fermented at $33^{\circ}C$ for 90 days. Sample B (preheating): chopped whole sardine with 8% NaCl and heating at $50^{\circ}C$ for 9 hrs and then fermented at $33^{\circ}C$ for 90 days. Sample C (control): neither pretreatment methods of water adding nor preheating on chopped whole sardine with 13% NaCl and then fermented at $33^{\circ}C$ for 90 days. Comparison of the appropriate fermentation period, yield of hydrolysate, chemical composition of fermented liquefied products were carried out. The highest content of amino nitrogen appeared at 60 days in the sample A, 75 days in the sample B, and 90 days in the sample C during the fermentation period. The appropriate fermentation period of the sample A was shorten 15 days than the sample B and 30 days than the sample C in the processing of sardine. The product A was lower NaCl (8.5%) and lower histamine content (25mg/100g) than the sample B and C. Possibly, three kinds of pretreatment methods such as water adding, heating, and intermittent NaCl adding, might be recommend as the processing of rapid- and low salt-fermented liquefaction product of chopped whole sardine.

  • PDF

Liquefaction susceptibility of silty tailings under monotonic triaxial tests in nearly saturated conditions

  • Gianluca Bella;Guido Musso
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.247-258
    • /
    • 2024
  • Tailings are waste materials of mining operations, consisting of a mixture of clay, silt, sand with a high content of unrecoverable metals, process water, and chemical reagents. They are usually discharged as slurry into the storage area retained by dams or earth embankments. Poor knowledge of the hydro-mechanical behaviour of tailings has often resulted in a high rate of failures in which static liquefaction has been widely recognized as one of the major causes of dam collapse. Many studies have dealt with the static liquefaction of coarse soils in saturated conditions. This research provides an extension to the case of silty tailings in unsaturated conditions. The static liquefaction resistance was evaluated in terms of stress-strain behavior by means of monotonic triaxial tests. Its dependency on the preparation method, the volumetric water content, the void ratio, and the degree of saturation was studied and compared with literature data. The static liquefaction response was proved to be dependent mainly on the preparation technique and degree of saturation that, in turn, controls the excess of pore pressure whose leading role is investigated by means of the relationship between the -B Skempton parameter and the degree of saturation. A preliminary interpretation of the static liquefaction response of Stava tailings is also provided within the Critical State framework.

Effects of excess pore pressure dissipation on liquefaction-induced ground deformation in 1-g shaking table test

  • Wang, B.;Zen, K.;Chen, G.Q.;Kasama, K.
    • Geomechanics and Engineering
    • /
    • v.4 no.2
    • /
    • pp.91-103
    • /
    • 2012
  • Focusing on the effect of excess pore pressure dissipation on liquefaction-induced ground deformation, a series of 1-g shaking table tests were conducted in a rigid soil container by use of saturated Toyoura sand, the relative density of which was 20-60%. These tests were subjected to the sinusoidal base shaking with step increased accelerations: 100, 200, 300 and 400 Gals for 2-4 seconds. Shaking table tests were done using either water or polymer fluid with more viscous than water, thus varying the sand permeability of model tests. Excess pore pressures, accelerations, settlements and lateral deformations were measured in each test. Test results are presented in this paper and the effect of sand permeability on liquefaction and liquefaction-induced ground deformation was discussed in detail.

A Study on the Application of UBC3D-PLM for Soil Liquefaction Analysis (액상화 해석을 위한 UBC3D-PLM의 적용성에 관한 연구)

  • Park, Eon-Sang;Kim, Byung-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • In this study, a model parameter evaluation method using relative density was proposed to utilize applicable UBC3D-PLM for liquefaction behavior. In addition, dynamic effective stress analysis, that is, liquefaction analysis, was performed on the case of the liquefaction occurrence region where acceleration and pore water pressure were measured, and compared with the actual measurement and the existing Finn analysis results. Through this study, it was found that the proposed method can easily evaluate the necessary parameters required by the related model and predict the pore water pressure behavior in the region where liquefaction occurs. In addition, in the case of the study area, both measurements and numerical analysis showed that liquefaction occurred when a certain amount of time elapsed after the earthquake acceleration reached the maximum value. In the case of UBC3D-PLM applied in this study, the excess pore water pressure behavior similar to the actual measurement was predicted, and the occurrence of liquefaction was evaluated in the same way as the actual measurement. In particular, although the excess pore water pressure in the sand layer was greater, the phenomenon in which liquefaction occurred in the silt layer was accurately realized. It is expected that the proposed model parameter evaluation method and finite element analysis applying UBC3D-PLM can be used to select the liquefaction reinforcement region in the future seismic design and reinforcement by evaluating the liquefaction occurrence region similarly to the real one.

Assessment of liquefaction potential of the Erzincan, Eastern Turkey

  • Duman, Esra Subasi;Ikizler, Sabriye Banu;Angin, Zekai;Demir, Gokhan
    • Geomechanics and Engineering
    • /
    • v.7 no.6
    • /
    • pp.589-612
    • /
    • 2014
  • This study includes determination of liquefaction potential in Erzincan city center. Erzincan Province is situated within first-degree earthquake zone on earthquake map of Turkey. In this context, the earthquake scenarios were produced using the empirical expressions. Liquefaction potential for different earthquake magnitudes (6.0, 6.5, 7.0) were determined. Liquefaction potential was investigated using Standard Penetration Test (SPT). Liquefaction potential analyses are determined in two steps: geotechnical investigations and calculations. In the first steps, boreholes were drilled to obtain disturbed and undisturbed soil samples and SPT values were obtained. Laboratory tests were made to identify geotechnical properties of soil samples. In the second step, liquefaction potential analyses were examined using two methods, namely Seed and Idriss (1971), Iwasaki et al. (1981). The liquefaction potential broadly classified into three categories, namely non-liquefiable, marginally liquefiable and liquefiable regions. Additionally, the liquefaction potential index classified into four categories, namely non-liquefiable, low, high and very high liquefiable regions. In order to liquefaction analysis complete within a short time, MATLAB program were prepared. Following the analyses, liquefaction potential index is investigated by Iwasaki et al. (1982) methods. At the final stage of this study, liquefaction potential maps and liquefaction potential index maps of the all study area by using IDW (inverse distance weighted) interpolation method in Geostatistical Analyst Module of ArcGIS 10.0 Software were prepared for different earthquake magnitudes and different depths. The results of soil liquefaction potential were evaluated in ArcGIS to map the distributions of drillings with liquefaction potential. The maps showed that there is a spatial variability in the results obtained which made it difficult to clearly separate between regional areas of high or low potential to liquefy. However, this study indicates that the presence of ground water and sandy-silty soils increases the liquefaction potential with the seismic features of the region.

Seabed Liquefaction with Reduction of Soil Strength due to Cyclic Wave Excitation

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.2
    • /
    • pp.53-58
    • /
    • 2017
  • This study introduces the case of pipelines installed in subsea conditions and buried offshore. Such installations generate pore water pressure under the seabed because of cyclic wave excitation, which is an environmental load, and consistent cyclic wave loading that reduce the soil shear strength of the seabed, possibly leading to liquefaction. Therefore, in view of the liquefaction of the seabed, stability of the subsea pipelines should be examined via calculations using a simple method for buried subsea pipelines and floating structures. Particularly, for studying the possible liquefaction of the seabed in regard to subsea pipelines, high waves of a 10- and 100-year period and the number of occurrences that are affected by the environment within a division cycle of 90 s should be applied. However, when applying significant wave heights (HS), the number of occurrences within a division cycle of 3 h are required to be considered. Furthermore, to research whether dynamic vertical load affect the seabed, mostly a linear wave is used; this is particularly necessary to apply for considering the liquefaction of the seabed in the case of pile structure or subsea pipeline installation.