• 제목/요약/키워드: lipoxygenase (Lox)

Search Result 77, Processing Time 0.024 seconds

γ-Aminobutyric acid (GABA) confers chromium stress tolerance in mustard (Brassica juncea L.) seedlings by modulating the antioxidant defense and glyoxalase systems

  • Al Mahmud, Jubayer;Hasanuzzaman, Mirza;Nahar, Kamrun;Rahman, Anisur;Hossain, Md. Shahadat;Fujita, Masayuki
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.235-235
    • /
    • 2017
  • Chromium (Cr) toxicity is hazardous to the seed germination, growth, and development of plants. ${\gamma}$-Aminobutyric acid (GABA) is a non-protein amino acid and is involved in stress tolerance in plants. To investigate the effects of GABA in alleviating Cr toxicity, we treated eight-d-old mustard (Brassica juncea L.) seedlings with Cr (0.15 mM and 0.3 mM $K_2CrO_4$, 5 days) alone and in combination with GABA ($125{\mu}M$) in a semi-hydroponic medium. The roots and shoots of the seedlings accumulated Cr in a dose-dependent manner, which led to an increase in oxidative damage [lipid peroxidation; hydrogen peroxide ($H_2O_2$) content; superoxide ($O{_2}^{{\cdot}-}$) generation; lipoxygenase (LOX) activity], MG content, and disrupted antioxidant defense and glyoxalase systems. Chromium stress also reduced growth, leaf relative water content (RWC), and chlorophyll (chl) content but increased phytochelatin (PC) and proline (Pro) content. Furthermore, supplementing the Cr-treated seedlings with GABA reduced Cr uptake and upregulated the non-enzymatic antioxidants (ascorbate, AsA; glutathione, GSH) and the activities of the enzymatic antioxidants including ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione peroxidase (GPX), superoxide dismutase (SOD), catalase (CAT), glyoxalase I (Gly I), and glyoxalase II (Gly II), and finally reduced oxidative damage. Adding GABA also increased leaf RWC and chl content, decreased Pro and PC content, and restored plant growth. These findings shed light on the effect of GABA in improving the physiological mechanisms of mustard seedlings in response to Cr stress.

  • PDF

Different oxidative burst patterns occur during host and nonhost resistance responses triggered by Xanthomonas campestris in pepper

  • Kwak, Youn-Sig;Han, Ki-Soo;Lee, Jung-Han;Lee, Kyung-Hee;Chung, Woo-Sik;Mysore, Kirankumar S.;Kwon, Young-Sang;Kim, Hee-Kyu;Bae, Dong-Won
    • Journal of Plant Biotechnology
    • /
    • v.36 no.3
    • /
    • pp.244-254
    • /
    • 2009
  • The hypersensitive reaction (HR) is the most common plant defense reaction against pathogens. HR is produced during both host- and nonhost-incompatible interactions. Several reports suggest that similarities exist between host and nonhost resistances. We assayed the pattern of generation of reactive oxygen species (ROS) and scavenging enzyme activities during nonhost pathogen-plant interactions (Xanthomonas campestris pv. campestris/Capsicum annuum L.) and incompatible host pathogen-plant interactions (Xanthomonas campestris pv. vesicatoria race1/Capsicum annuum L.). Both ${O_2}^-\;and\;H_2O_2 $ accumulated much faster during nonhost resistance when compared to the host resistance. The scavenging enzyme activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX) were also different during the host- and nonhost-incompatible interactions. CAT activity was much higher during nonhost resistance, and several new isozymes of SOD and POX were detected during nonhost resistance when compared to the host resistance. Lipoxygenase (LOX) activity was higher in host resistance than nonhost resistance during the early stages of infection. Interestingly, the nitric oxide (NO) radical accumulated equal amounts during both host and nonhost resistance at early stages of infection. Further studies are needed to determine the specific pathways underlying these differences between host and nonhost resistance responses.

Arachidonic Acid Activates $K^+$-$Cl^-$-cotransport in HepG2 Human Hepatoblastoma Cells

  • Lee, Yong-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.5
    • /
    • pp.401-408
    • /
    • 2009
  • $K^+$-$Cl^-$-cotransport (KCC) has been reported to have various cellular functions, including proliferation and apoptosis of human cancer cells. However, the signal transduction pathways that control the activity of KCC are currently not well understood. In this study we investigated the possible role of phospholipase $A_2$ ($PLA_2$)-arachidonic acid (AA) signal in the regulatory mechanism of KCC activity. Exogenous application of AA significantly induced $K^+$ efflux in a dose-dependent manner, which was completely blocked by R-(+)-[2-n-butyl-6,7 -dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1Hinden-5-yl]oxy]acetic acid (DIOA), a specific KCC inhibitor. N-Ethylmaleimide (NEM), a KCC activatorinduced $K^+$ efflux was significantly suppressed by bromoenol lactone (BEL), an inhibitor of the calciumindependent $PLA_2$ ($iPLA_2$), whereas it was not significantly altered by arachidonyl trifluoromethylketone ($AACOCF_3$) and p-bromophenacyl bromide (BPB), inhibitors of the calcium-dependent cytosolic $PLA_2$ ($cPLA_2$) and the secretory $PLA_2$ ($sPLA_2$), respectively. NEM increased AA liberation in a doseand time-dependent manner, which was markedly prevented only by BEL. In addition, the NEM-induced ROS generation was significantly reduced by DPI and BEL, whereas $AACOCF_3$ and BPB did not have an influence. The NEM-induced KCC activation and ROS production was not significantly affected by treatment with indomethacin (Indo) and nordihydroguaiaretic acid (NDGA), selective inhibitors of cyclooxygenase (COX) and lipoxygenase (LOX), respectively. Treatment with 5,8,11,14-eicosatetraynoic acid (ETYA), a non-metabolizable analogue of AA, markedly produced ROS and activated the KCC. Collectively, these results suggest that $iPLA_2$-AA signal may be essentially involved in the mechanism of ROS-mediated KCC activation in HepG2 cells.

In vitro Antioxidant and Anti-inflammatory Effects of Ethanol Extracts from Sprout of Evening Primrose (Oenothera laciniata) and Gooseberry (Actinidia arguta) (달맞이순과 다래순 에탄올 추출물의 in vitro 항산화효과 및 항염증효과)

  • Kwak, Chung Shil;Lee, Ji Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.2
    • /
    • pp.207-215
    • /
    • 2014
  • To investigate the biological benefits of Korean traditional vegetables, anti-oxidative and anti-inflammatory effects of ethanol extracts from blanched and dried sprouts of evening primrose (Oenothera laciniata, OL) and gooseberry (Actinidia arguta, AA) were measured. Total polyphenol and flavonoid contents of OL were higher than those of AA; OL contained 60.4 mg tannic acid/g dry weight and 31.9 mg rutin/g dry weight, while AA contained 33.0 mg tannic acid/g dry weight and 20.3 mg rutin/g dry weight. The $IC_{50}$ value for DPPH radical scavenging activity was $58.2{\mu}g/mL$ for OL ethanol extract and $122.1{\mu}g/mL$ for AA ethanol extract. The reducing power upon $500{\mu}g/mL$ of ethanol extract treatment was as strong as $52.1{\mu}g$ ascorbate eq./mL for OL and $45.3{\mu}g$ ascorbate eq./mL for AA. Regarding anti-inflammatory effects, inhibition rate against 5-lipoxygenase (LOX) and cyclooxygenase (COX)-2 activities were 29.5% and 79.5% for OL, as well as 11.5% and 39.1% for AA, respectively at a concentration of $250{\mu}g/mL$. Lipopolysaccaride ($1{\mu}g/mL$)-treated RAW 264.7 macrophage cells subjected to OL ethanol extract at various concentrations ($0{\sim}25{\mu}g/mL$) showed significantly reduced synthesis of nitrite oxide (NO), prostaglandin (PG) E2, and IL-6 in a dose-dependent manner without cytotoxicity, although TNF-${\alpha}$ synthesis was not affected. In conclusion, both OL and AA sprouts showed strong antioxidative activity, whereas OL showed very strong anti-inflammatory activity via effective reduction of NO, PGE2, and IL-6 synthesis in LPS-activated macrophage cells.

Anti-osteoarthritis effect of Boswellia serrata gum resin extract in monosodium iodoacetate-induced osteoarthritic Sprague-Dawley rats (Monosodium iodoacetate 유도 골관절염 동물모델에서 보스웰리아 검레진 추출물의 항골관절염 효과 연구)

  • Jae In Jung;Ryong Kim;Eun Ji Kim
    • Journal of Nutrition and Health
    • /
    • v.56 no.3
    • /
    • pp.231-246
    • /
    • 2023
  • Purpose: The aim of this study was to investigate the anti-osteoarthritic effect of the ethanol extract of Boswellia serrata gum resin (FJH-UBS) enriched with keto-β-boswellic acid and 3-O-acetyl-11-keto-β-boswellic acid compared to the conventional Boswellia serrata extract by adding the process of removing oil with hexane, in the monosodium iodoacetate (MIA)-induced osteoarthritis rat model. Methods: Sprague-Dawley (SD) rats were orally administered 0, 40, or 80 mg of FJH-UBS/kg body weight (BW)/day for 5 weeks and injected with MIA intra-articularly into right knee joints on day 15 to induce osteoarthritis. Changes in the knee joint microarchitecture, cartilage degradation, the expression of inflammatory mediators, cytokines, and matrix metalloproteinases (MMPs) in serum and synovia were observed. Results: Oral administration of FJH-UBS (80 mg/kg BW/day) reduced MIA-induced knee swelling and cartilage degradation and increased the expression of type II collagen and aggrecan in articular cartilage. Furthermore, FJH-UBS administration reduced MIA-induced increases in the serum levels of prostaglandin E2, leukotriene B4, interleukin (IL)-1β, IL-6, and MMP-13, and MIA-induced increases in the mRNA expressions of inducible nitric oxide synthase, cyclooxygenase-2, 5-lipoxygenase, IL-1β, IL-6, TNF-α, MMP-2, MMP-9, and MMP-13 in the synovia of knee joints. Conclusion: These results indicate that FJH-UBS exerts its anti-osteoarthritic effects by suppressing the expressions of inflammatory cytokines and MMPs and, thus, cartilage degradation. Furthermore, they suggest that FJH-UBS has potential use as a functional food that improves joint and cartilage health.

Inhibitory Effects of Apple Peel Extract on Inflammatory Enzymes (사과 과피 추출물의 염증 관련 효소 억제 효과)

  • Kim, Ilrang
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.534-538
    • /
    • 2015
  • The purpose of this study was to investigate the biological benefits of apple peel. The antioxidant and anti-inflammatory activities of a 70% ethanol extract of apple peel were examined. The total phenolic compound and flavonoid contents of apple peel were $6.8{\pm}0.5mg$ gallic acid equivalent/g of fresh weight and $3.3{\pm}0.3mg$ catechin equivalent/g of fresh weight, respectively. Antioxidant activity was evaluated by measuring 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. The DPPH radical scavenging activity of apple peel was $18.9{\pm}1.6$, $46.3{\pm}2.3$ and $58.1{\pm}3.9%$ at concentrations of 0.1, 0.5 and 1.0 mg/mL, respectively (p<0.05). The anti-inflammatory effect was investigated by measuring the inhibition of inflammatory enzymes. Apple peel significantly inhibited secretory phospholipase, cyclooxygenase-1, cyclooxygenase-2, and lipoxygenase activity by up to $53.5{\pm}2.3$, $13.4{\pm}1.8$, $64.8{\pm}5.4$ and $44.4{\pm}4.5%$, respectively (p<0.05). Taken together, these findings suggest that apple peel may act as an antioxidant by radical scavenging and may possess potential anti-inflammatory properties for suppressing the activity of inflammatory enzymes. These results also suggest that apple peel can be utilized as a health functional food ingredient possessing antioxidant and anti-inflammatory activities.

Effects Unripe and Ripe Rubus coreanus Miquel on Peritoneal Macrophage Gene Expression Using cDNA Microarray Analysis (미숙과와 성숙과 복분자의 섭취가 복강 Macrophages의 유전자 발현에 미치는 영향)

  • Lee, Jung Eun;Cho, Soo-Muk;Kim, Jin;Kim, Jung-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.10
    • /
    • pp.1552-1559
    • /
    • 2013
  • Rubus coreanus Miquel (RCM) has been used as one of the Korean traditional medicines for prostate health. In addition, recent studies have reported that RCM reduced chronic inflammatory diseases such as cancer, and rheumatoid arthritis. Therefore, in this study, we investigated the effects of unripe and ripe RCM on inflammationrelated gene expressions in LPS-stimulated mouse peritoneal macrophages. Mice were fed with 2% unripe RCM (U2), 10% unripe RCM (U10), 2% ripe RCM (R2), and 10% ripe RCM (R10) for 8 weeks. Peritoneal macrophages were isolated and stimulated with LPS then proinflammatory mediators (TNF-${\alpha}$, IL-$1{\beta}$, and IL-6), and prostaglandin E2 ($PGE_2$) productions were assessed. Moreover, gene expression profiles were analyzed by cDNA microarray method. Unripe and ripe RCM significantly reduced TNF-${\alpha}$ production but only unripe RCM decreased IL-$1{\beta}$ and IL-6 production. RCM intake significantly reduced inflammatory-related gene expressions such as arachidonate 5-lipoxygenase, interleukin 11, and nitric oxide synthase 2. Furthermore, unripe and ripe RCM significantly decreased ceruloplasmin, tissue plasminogen activator, thrombospondin 1, and vascular endothelial growth factor A expression which modulates symptoms of chronic inflammatory diseases. RCM intake also significantly increased hypoxia inducible factor 3, alpha which is the negative regulators of hypoxia-inducible gene expression. Furthermore, only unripe RCM reduced chemokine (C-C motif) ligand 8, chemokine (C-X-C motif) ligand 14, and phospholipase A2 expression. In this study, we showed that RCM had anti-inflammatory effects by suppression of pro-inflammatory mediator expressions and may reduce chronic inflammatory disease progress through regulation of gene expressions. These findings suggest that RCM might be used as a potential functional material to reduce chronic inflammatory responses.