• Title/Summary/Keyword: lipid peroxidation of kidney

Search Result 140, Processing Time 0.028 seconds

Effects of soybean isoflavone extract on the plasma lipid profiles and antioxidant enzyme activity in streptozotocin-induced diabetic rats

  • Shim, Jee-Youn;Kim, Yoo-Jung;Lee, Hye-Sung
    • Nutrition Research and Practice
    • /
    • v.2 no.4
    • /
    • pp.218-226
    • /
    • 2008
  • The present study evaluated the effects of various dosages of soybean isoflavone extract on lipid profiles, lipid peroxidation and antioxidant activities in streptozotocin-induced diabetic rats. The one normal control group was fed an AIN-76-based experimental diet and four diabetic groups were fed the same diet, supplemented with four different levels of soybean isoflavone extract for seven weeks. The daily dosages of pure isoflavone for four diabetic groups were set to be 0 mg (diabetic control), 0.5 mg (ISO-I), 3.0 mg (ISO-II) and 30.0 mg (ISO-III) per kilogram of body weight, respectively. The plasma total cholesterol levels and the TBA-reactive substances contents in the liver and kidney were significantly lowered in ISO-II and ISO-III groups compared to those in the diabetic control group. The levels of plasma HDL-cholesterol, plasma vitamin A and hepatic superoxide dismutase were significantly increased in those two groups compared with the diabetic control group. The present study demonstrated the possibility that the diets supplemented with 3.0 mg and 30.0 mg of soybean isoflavone extract may have beneficial effects on the plasma lipids, tissue lipid peroxidation and partly on antioxidant system in diabetic animals and there were no significant differences between the ISO-II and ISO-III groups. The results suggest that the effective daily dosage level of isoflavone for improving lipid metabolism in diabetic rats may be above 3.0 mg per kilogram body weight.

Effect of Glycyrrhizae Radix Extract on Ischemia-Induced Acute Renal Failure in Rabbits (감초(甘草) 추출물이 허혈에 의한 토끼의 급성 신부전에 미치는 영향)

  • Kim Gyung-Ho;Jeong Hyun-Woo;Park Jin-Young;Lee Young-Joon;Cho Su-In
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.98-102
    • /
    • 2006
  • The present stuby was carried out to determine if Radix Glycyrrhizae extract exerts beneficial effect against the ischemia-induced acute renal failure in rabbits. Radix Glycyrrhizae was known to reinforce the function of the spleen and replenish Qi, remove heat and counteract toxicity, dispel phlegm and relieve cough, alleviate spasmodic pain, and to moderate drug actions. It's indications are weakness of the spleen and the stomach marked by lassitude and weakness; cardiac palpitation and shortness of breath; cough with much phlegm; spasmodic pain in the epigastrium, abdomen and limbs; carbuncles and sores. It is often used for reducing the toxic or drastic actions of other drugs. Rabbits were treated with Radix Glycyrrhizae extract via i.v., followed by renal ischemia/reperfusion. Fractional excretion of glucose and phosphate, lipid peroxidation and light microscopy were done to evaluate the beneficial effect of Radix Glycyrrhizae extract on ischemia/reperfusion induced acute renal failure. Renal ischemia/reperfusion caused increase of fractional excretion of glucose and phosphate increased in ischemia-induced animals, which was partially prevented by Radix Glycyrrhizae extract treatment. Ischemia/reperfusion increased lipid peroxidation, which was prevented by Radix Glycyrrhizae extract administration. And the beneficial effect of Radix Glycyrrhizae extract on ischemia/reperfusion induced kidney injury was shown through the light micrographic observation. These results indicate that lipid peroxidation plays a critical role in ischemia-induced acute renal failure. Radix Glycyrrhizae extract exerts the protective effect against acute renal failure induced by renal ischemia/reperfusion.

Protective role of caffeic acid in an Aβ25-35-induced Alzheimer's disease model

  • Kim, Ji Hyun;Wang, Qian;Choi, Ji Myung;Lee, Sanghyun;Cho, Eun Ju
    • Nutrition Research and Practice
    • /
    • v.9 no.5
    • /
    • pp.480-488
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Alzheimer's disease (AD) is characterized by deficits in memory and cognitive functions. The accumulation of amyloid beta peptide ($A{\beta}$) and oxidative stress in the brain are the most common causes of AD. MATERIALS/METHODS: Caffeic acid (CA) is an active phenolic compound that has a variety of pharmacological actions. We studied the protective abilities of CA in an $A{\beta}_{25-35}$-injected AD mouse model. CA was administered at an oral dose of 10 or 50 mg/kg/day for 2 weeks. Behavioral tests including T-maze, object recognition, and Morris water maze were carried out to assess cognitive abilities. In addition, lipid peroxidation and nitric oxide (NO) production in the brain were measured to investigate the protective effect of CA in oxidative stress. RESULTS: In the T-maze and object recognition tests, novel route awareness and novel object recognition were improved by oral administration of CA compared with the $A{\beta}_{25-35}$-injected control group. These results indicate that administration of CA improved spatial cognitive and memory functions. The Morris water maze test showed that memory function was enhanced by administration of CA. In addition, CA inhibited lipid peroxidation and NO formation in the liver, kidney, and brain compared with the $A{\beta}_{25-35}$-injected control group. In particular, CA 50 mg/kg/day showed the stronger protective effect from cognitive impairment than CA 10 mg/kg/day. CONCLUSIONS: The present results suggest that CA improves $A{\beta}_{25-35}$-induced memory deficits and cognitive impairment through inhibition of lipid peroxidation and NO production.

Protective Effect of Sasa borealis Leaf Extract on AAPH-Induced Oxidative Stress in LLC-PK1 Cells

  • Hwang, Ji-Young;Lee, Hee-Seob;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.1
    • /
    • pp.12-17
    • /
    • 2011
  • This study was designed to investigate the protective effect of Sasa borealis leaf extract on 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress in LLC-PK1 cells (porcine kidney epithelial cells). The butanol fraction from Sasa borealis leaf extract (SBBF) was used in this study because it possessed strong antioxidant activity and high yield among fractions. Exposure of LLC-PK1 cells to 1 mM AAPH for 24 hr resulted in a significant decrease in cell viability, but SBBF treatment protected LLC-PK1 cells from AAPH-induced cell damage in a dose dependant manner. To determine the protective action of SBBF against AAPH-induced damage of LLC-PK1 cells, we measured the effects of SBBF on lipid peroxidation and antioxidant enzymes activities of AAPH treated cells as well as scavenging activities on superoxide anion radical and hydroxyl radical. SBBF had a protective effect against the AAPH-induced LLC-PK1 cellular damage and decreased lipid peroxidation and increased activities of antioxidant enzymes such as superoxide dismutase and glutathione peroxidase. Furthermore, SBBF showed strong scavenging activity against superoxide anion radical. The $IC_{50}$ value of SBBF was $28.45{\pm}1.28\;{\mu}g/mL$ for superoxide anion radical scavenging activity. The SBBF also had high hydroxyl radical scavenging activity ($IC_{50}=31.09{\pm}3.08\;{\mu}g/mL$). These results indicate that SBBF protects AAPH-induced LLC-PK1 cells damage by inhibiting lipid peroxidation, increasing antioxidant enzyme activities and scavenging free radicals.

Fucoidan Protects LLC-PK1 Cells against AAPH-induced Damage

  • Park, Min-Jung;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.4
    • /
    • pp.259-265
    • /
    • 2008
  • This study was designed to investigate the protective effect of fucoidan against AAPH-induced oxidative stress in LLC-PK1 cells (porcine kidney epithelial cells). Oxidative stress was induced by exposing of LLC-PK1 cells to the 1 mM 2,2'-azobis(2-amidino propane) dihydrochloride (AAPH) for 24 hr. Exposure of LLC-PK1 cells to 1 mM AAPH for 24 hr resulted in a significant (p<0.05) decrease in cell viability, but fucoidan treatment protected LLC-PK1 cells from AAPH-induced cell damage in a dose dependant manner. To investigate the protective action of fucoidan against AAPH-induced damage of LLC-PK1 cells, we measured the effects of fucoidan on lipid peroxidation and antioxidant enzymes activities of AAPH treated cells as well as scavenging activities on superoxide anion radical and hydroxyl radical. Fucoidan had protective effect against the AAPH-induced LLC-PK1 cellular damage and decreased lipid peroxidation and increased activities of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-px). Furthermore, fucoidan showed strong scavenging activity against superoxide anion radical. The $IC_{50}$ value of fucoidan was $48.37{\pm}1.54\;{\mu}g/mL$ for superoxide anion radical scavenging activity. The fucoidan also had high hydroxyl radical scavenging activity ($IC_{50}=32.03\;{\mu}g/mL$). These results indicate that fucoidan protects against AAPH-induced LLC-PK1 cell damage by inhibiting lipid peroxidation, increasing antioxidant enzyme activities and scavenging offree radicals.

Cytoprotective and Antioxidative Effects of Crude Drug Preparation (E-kong-san) (이공산(異功散)의 세포보호 및 항산화 작용)

  • Lee, Kyung-Tae;Choi, Jung-Hye;Rho, Young-Soo;Ahn, Kyoo-Seok;Chang, Sung-Goo;Oh, Soo-Myung;Jung, Jee-Chang
    • Korean Journal of Pharmacognosy
    • /
    • v.30 no.3
    • /
    • pp.255-260
    • /
    • 1999
  • In the previous report, E-kong-san, which is usually used for recovering health in traditional medicine, has been shown to decrease cisplatin induced nephrotoxicity in vivo and in vitro. The significant reduction of E-kong-san on the cisplatin induced nephrotoxicity led us to investigate whether the effect of this water extract was a result of triggering antioxidation. In monkey kidney Vero cells, E-kong-san at $5{\sim}10\;mg/ml$ was able to attenuate 2mM cisplatin-stimulated cell death by 46.8% and 31.8%, respectively. E-kong-san showed strong free radical scavengering activities on 1,1-diphenyl-2-picrylhydrazil (DPPH) radical and xanthine/xanthine oxidase (XOD) generated superoxide anion radical $(O_2^{-.})$. We further studied the effects of E-kong-san on lipid peroxidation in rat liver microsomes induced by enzymatic and nonenzymatic methods. Moreover, E-kong-san exhibited significant inhibition on both ascorbic $acid/Fe^{2+}$ and $ADP/NADPH/Fe^{3+}$ induced lipid peroxidation in rat liver microsomes. Based on these results, we suggest that E-kong-san protects the cisplatin induced cytotoxicity by its antioxidative mechanism.

  • PDF

Protective Effects of the Fermented Laminaria japonica Extract on Oxidative Damage in LLC-PK1 Cells

  • Park, Min-Jung;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.4
    • /
    • pp.227-233
    • /
    • 2013
  • This study investigated the protective effect of the butanol (BuOH) fraction from fermented Laminaria japonica extract (BFLJ) on AAPH-induced oxidative stress in porcine kidney epithelial cells (LLC-PK1 cells). L. japonica was fermented by Aspergillus oryzae at $35{\pm}1^{\circ}C$ for 72 h. Freeze-dried fermented L. japonica was extracted with distilled water, and the extracted solution was mixed with ethanol and then centrifuged. The supernatant was subjected to sequential fractionation with various solvents. The BuOH fraction was used in this study because it possessed the strongest antioxidant activity among the various solvent fractions. The BuOH fraction of fermented L. japonica had a protective effect against the AAPH-induced LLC-PK1 cells damage and increased cell viability while reducing lipid peroxidation formation and increased activities of antioxidant enzymes such as superoxide dismutase and glutathione peroxidase. The inhibitory effect of BFLJ on lipid peroxidation formation had a higher value of $0.11{\pm}0.01nmol$ MDA at $100{\mu}g/mL$ concentration in comparison with intact BuOH fraction showing $0.22{\pm}0.08nmol$ MDA at the same concentration. Furthermore, BFLJ treatment increased glutathione concentration. GSH concentration in the cell treated with BFLJ of $100{\mu}g/mL$ was $1.80pmol/L{\times}10^5cells$. These results indicate that BFLJ protects the LLC-PK1 cells against AAPH-induced cell damage by inhibiting lipid peroxidation formation and increasing antioxidant enzyme activities and glutathione concentration.

Effect of Coicis Semen Extract on Streptozotocin-Induced Diabetic Nephrophthy Rats (의이인(薏苡仁) 추출물의 경구투여가 Streptozotocin에 의한 흰쥐의 당뇨병성 신증에 미치는 영향)

  • Kim, Hyung-Woo;Kim, Jung-Sang;Cho, Su-In
    • The Korea Journal of Herbology
    • /
    • v.21 no.3
    • /
    • pp.75-81
    • /
    • 2006
  • Objectives : The present study was carried out to investigate the beneficial effect of Coicis Semen extract(CSe) on streptozotocin(STZ)-induced diabetic nephropathy rats. CSe was given to rats with oral administration. Methods : The experimental animals were divided into 3 groups : normal group of rats, control group of STZ-induced diabetic rats, sample group with CSe treatment. Experimental diabetes was induced by the injection of STZ(60 mg/kg) to the rat via the peritoneum. The effects of CSe on STZ-induced diabetic nephropathy were observed by measuring the serum level of creatinine, BUN and uric level of glucose. Kidney level of lipid peroxidation and the activities of reduced glutathione(GSH) were also examined Results : STZ-induced increase of serum creatinine was lowered by CSe treatment, but BUN and uric level of glucose did not show significant changes. CSe oral administration showed statistical decrease of lipid peroxidation in renal cortical tissues, but it has no effect on the activities of GSH. Conclusion : CSe treatment showed protective effect on rat diabetic nephropathy model, but action mechanism of the effect was still not dear. We thought to be concerned with anti-oxidative stress.

  • PDF

Hypoglycemic and Hypolipidemic Effects of Tectorigenin and Kaikasaponin III in the Streptozotocin-Induced Diabetic Rat and their Antioxidant Activity in vitro

  • Lee, Kyung-Tae;Sohn, Il-Cheol;Kim, Dong-Hyun;Choi, Jong-Won;Kwon, Sang-Hyuk;Park, Hee-Juhn
    • Archives of Pharmacal Research
    • /
    • v.23 no.5
    • /
    • pp.461-466
    • /
    • 2000
  • Tectorigenin and kaikasaponin III from the flowers of Pueraria thunbergiana showed potent hypoglycemic and hypolipidemic effects in the streptozotocin-induced diabetic rats. Intraperitoneal administration of these two compounds with 5 and 10 mg/kg, respectively, for seven days to streptozotocin-induced rats significantly reduced the blood glucose, total cholesterol, LDL- and VLDI-cholesterol and triglyceride levels when compared with those of control group. Glycitein in which 5-OH is unlinked and tectoridin (7-O-glycoside of tectorigenin) isolated from the flowers of P. thunbergiana did not improve hyperglycemia and hyperlipidemia. In addition, tectorigenin showed in vitro antioxidant effects on 1,1-diphenyl-B-pirylhydrazyl (DPPH) radical, xanthine-xanthine oxidase superoxide anion radical, and lipid peroxidation in rat microsomes induced by enzymatic and non-enzymatic methods. We further found that tectorigenin and kaikasaponin III protected the Vero cell line(normal monkey kidney) from injury by hydrogen peroxide. From these findings, it seems likely that the antioxidant action of tectorigenin and kaikasaponin III may alleviate the streptozotocin-induced toxicity and contribute to hypoglycemic and hypolipidemic effects.

  • PDF

Anti-oxidative Effect of a Protein from Cajanus indicus L against Acetaminophen-induced Hepato-nephro Toxicity

  • Ghosh, Ayantika;Sil, Parames C.
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.1039-1049
    • /
    • 2007
  • Overdoses of acetaminophen cause hepato-renal oxidative stress. The present study was undertaken to investigate the protective effect of a 43 kDa protein isolated from the herb Cajanus indicus, against acetaminophen-induced hepatic and renal toxicity. Male albino mice were treated with the protein for 4 days (intraperitoneally, 2 mg/kg body wt) prior or post to oral administration of acetaminophen (300 mg/kg body wt) for 2 days. Levels of different marker enzymes (namely, glutamate pyruvate transaminase and alkaline phosphatase), creatinine and blood urea nitrogen were measured in the experimental sera. Intracellular reactive oxygen species production and total antioxidant activity were also determined from acetaminophen and protein treated hepatocytes. Indices of different antioxidant enzymes (namely, superoxide dismutase, catalase, glutathione-S-transferase) as well as lipid peroxidation end-products and glutathione were determined in both liver and kidney homogenates. In addition, Cytochrome P450 activity was also measured from liver microsomes. Finally, histopathological studies were performed from liver sections of control, acetaminophen-treated and protein pre- and post-treated (along with acetaminophen) mice. Administration of acetaminophen increased all the serum markers and creatinine levels in mice sera along with the enhancement of hepatic and renal lipid peroxidation. Besides, application of acetaminophen to hepatocytes increased reactive oxygen species production and reduced the total antioxidant activity of the treated hepatocytes. It also reduced the levels of antioxidant enzymes and cellular reserves of glutathione in liver and kidney. In addition, acetaminophen enhanced the cytochrome P450 activity of liver microsomes. Treatment with the protein significantly reversed these changes to almost normal. Apart from these, histopathological changes also revealed the protective nature of the protein against acetaminophen induced necrotic damage of the liver tissues. Results suggest that the protein protects hepatic and renal tissues against oxidative damages and could be used as an effective protector against acetaminophen induced hepato-nephrotoxicity.