• Title/Summary/Keyword: lipid membranes

Search Result 170, Processing Time 0.032 seconds

A Scanning Calorimetric Study of the Effect of Clover Saponin on Liposomal Phospholipid Membrane

  • Bae, Song-Ja;Han, Suk-Kyu;Im, Kwang-Sik;Kim, Nam-Hong
    • Archives of Pharmacal Research
    • /
    • v.11 no.3
    • /
    • pp.181-184
    • /
    • 1988
  • The effect of clover saponin on the phase transition of liposomal lipid bilayers of dimyristoyl phosphatidylcholine was investigated with differential scanning calorimetry. The thermograms of the liposomal bilayers incorporated with the clover saponin were obtained, and the enthalpy changes and the sizes of cooperative unit of the transition were calculated. The results showed that incorporation of the clover saponin into the liposomal bilayers effectively reduced the transition temperature at which the transition from solid state to liquid-crystalline state occurs, and broadened the thermogram peaks. It also reduced the size of cooperative unit of the transition. These results indicate that the clover saponin might have significant effect on the fluidity of biological membranes.

  • PDF

Effect of Silkworm Powder on Oxygen radicals and Their Scavenger Enzymes in Brain membranes of SD Rats (뇌조직의 활성산소 및 그 제거효소에 미치는 누에분말의 영향)

  • 최진호;김대익;박수현;김동우;김정민;이희삼;류강선
    • Journal of Sericultural and Entomological Science
    • /
    • v.42 no.2
    • /
    • pp.93-98
    • /
    • 2000
  • This study was designed to investigate the effect of silkworm powder on oxygen radicals and their scavenger enzymes in brain membrances of SD rats. Hydroxyl radical (OH) levels resulted in a considerable decreases in brain mitochondria fraction. Superoxide radical (O$_2$) levels were a slightly decreased in brain cytosol fraction. Lipid peroxide (LPO) and Oxidized protein (OP) levels were significantly decreased in brain mitochondria and microsomes fraction. Mn-superoxide dismutase (SOD) activity was remarkably increased in the mitochondria fraction. Cu and Zn-SOD activities were effectively increased in brain cytosol fraction. GSHPx activity was considerably increased in brain cytosol fraction. These results suggest that anti-aging effect of silkworm plays an effective role in attenuating an oxidative stress and increasing a scravenger enzyme activity in brain membranes.

  • PDF

Effects of Pine Needle Ethyl Acetate Fraction on Membrane Fluidity and Oxidative Stress in Brain Membranes of Rats (뇌 세포막의 유동성과 산화적 스트레스에 미치는 솔잎(Pine Needle) 에틸아세테이트획분의 영향)

  • 최진호;김대익;배승진;박시향;김남주;조원기;김군자;김창목
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.692-698
    • /
    • 2003
  • This study was designed to investigate the effects of ethyl acetate (EtOAc) fraction of pine (Pinus densiflora Sieb et Zucc) needle on membrane fluidity (MF), basal and induced oxygen radical (BOR and IOR), lipid peroxide (LPO) and oxidized protein (OP) as a oxidative stress, and lipofuscin (LF) in brain membranes of Sprague-Dawley (SD) rats. Male SD rats were fed basic diets (control) and experimental diets (EtOAc-25, EtOAc-50 and EtOAc-100) for 45 days. MF was significantly increased (about 10%) in mitochondria of EtOAc-100 group. BOR and IOR formations in mitochondria were significantly inhibited (about 9∼10% and 17∼24%, respectively) in EtOAc-50 and EtOAc-100 groups, while BOR and IOR formations in microsomes were significantly inhibited (about 12∼17% and 12∼16%, respectively) in EtOAc-50 and EtOAc-100 groups compared with control group. LPO levels in mitochondria and microsomes were significantly inhibited (about 9∼l2% and 12∼19%, respectively) in EtOAc-50 and EtOAc-100 groups, whereas significant difference between OP or LF levels and control group in these membranes could not be obtained. These results suggest that administrations of ethyl acetate fraction of pine needle may play an effective role in an attenuating an oxidative stress and in increasing membrane fluidity.

Effect of Triterpenoidal Glycosides of Dammarane Series and Their Aglycones on Phase Transitions of Dipalmitoylphosphatidylcholine (DPPC의 상전이에 미치는 Dammarane Series의 Triterpenoidal Glycoside와 그 Aglycone의 영향)

  • Kim, Yu.A.;Park, Kyeong-Mee;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • v.20 no.1
    • /
    • pp.23-29
    • /
    • 1996
  • The effect of ginseng glycosides and their aglycones on the thermodynamic characteristics of membranes from dipalmitoylphosphatidylcholine (DPPC) was investigated. Total saponins (TS) from Korean red ginseng, Panax ginseng C.A. Meyer, interacted with the Eel Phase of lipid in the Polar region and did not penetrate the deeper glycerol backbone of lipid molecule. From the all investigated components of TS (aglycons and ginsenosides), only 20-(S)-panaxadiol (PD) had an effect similar to TS. High concentration of TS penetrated in hydrophobic Cl-C8 region. The presence of cholesterol did not influence the interaction of TS with DPPC. An elimination of transition, however, took place at 10~100 $\mu\textrm{g}$/ml of TS. DPPC had a low ability to interact with cholesterol (CHL) as compared with other lecithins except ethanolamine. From our results, only TS and PD, at high concentrations (100 mol%), influenced the phase transition of mixture of DPPC:CHL.

  • PDF

Mutant and Its Functional Revertant Signal Peptides of Escherichia coli Ribose Binding Protein Show the Differences in the Interaction with Lipid Bilayer

  • Oh, Doo-Byoung;Taeho Ahn;Kim, Hyoung-Man
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.43-43
    • /
    • 1999
  • Signal peptides of secretary proteins interact with various membranes and non-membrane components during the translocation. We investigated the interaction of signal peptides of ribose binding protein (RBP) with Escherichia coli (E.coli) signal recognition particle (SRP), SecA and lipid bilayer. Previous studies showed that the functional signal peptides inhibit the GTPase activity of E.coli SRP which consisted of F로 and 4.5S RNA.(omitted)

  • PDF

Effects of Nonlamellar-Prone Lipids on the ATPase Activity of SecA Bound to Model Membranes

  • Taeho Ahn;Kim, Hyoungman
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1998.06a
    • /
    • pp.27-27
    • /
    • 1998
  • The effect of nonlamellar-prone lipids, diacylglycerol (DG) and phosphatidylethanolamine (PE), on the ATPase activity of SecA was examined. When Escherichia coli (E. coli) PE of the standard vesicles composed of 60 mol% of this lipid and 40 mol% of dioleoylphosphatidylglycerol (DOPG) is gradually replaced with either dioleoylgylcerol (DOG) or dioeloyl PE(DOPE), the ATPase activity of SecA present together increased appreciably.(omitted)

  • PDF

ATP Modulation of Cloned Rat Brain Large-conductance $Ca^{2+}$-activated $K^+$ Channel by Protein Phosphorylation

  • Park, S.Y.;S. Chung
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.63-63
    • /
    • 1999
  • Large conductance $Ca^{2+}$-activated $K^{+}$ channels (Maxi-K channel) have been implicated in many important physiological processes such as co-ordination of membrane excitability in neurons. Modulation of these channels are archived by the activity of various protein kinases. The most widely studied example of Maxi-K channel regulation by protein phosphorylation has been obtained using plasma membranes from the rat brain incorporated into lipid bilayers.(omitted)

  • PDF

Effects of Benzyl Alcohol on Structures and Calcium Transport Function of Biological Cell Membranes (Benzyl Alcohol이 세포막의 형태 및 Calcium 이온 이동에 미치는 영향)

  • Lee, Hwang-Hyun;Hah, Jong-Sik;Kim, Ku-Ja
    • The Korean Journal of Physiology
    • /
    • v.21 no.2
    • /
    • pp.157-167
    • /
    • 1987
  • Benzyl alcohol is known to have dual effect on the red blood cell shape change. At low concentration up to 50 mM benzyl alcohol transformed the shape from discocyte to stomatocyte by preferent binding to the inner hemileaflet, however, at higher concentratransformed the shape from discocyte to stomatocyte by preferential binding to the inner monolayer, however, at higher concentration above 50 mM benzyl alcohol transformed to echinocyte by affecting both monolayers. These results suggest that the effect of benzyl alcohol on the red blood cell shape and $Ca^{++}$ transport across cardiac cell membranes to assess the effects of the drug on the structures and functions of the biological cell membranes. The results are as follows: 1) Benzyl alcohol up to 40 mM caused progressive stomatocytic shap change of the red blood cell but above 50 mM benzyl alcohol caused echinocytic shape change. 2) Benzyl alcohol up to 40 mM inhibited both osmotic hemolysis and osmotic volume change of the red blood cell in hypotonic and hypertonic NaCl solutions, respectively. 3) Benzyl alcohol inhibited both Bowditch Staircase and Wood-worth Staircase phenomena at rat left auricle. 4) Benzyl alcohol at concentration of 5 mM increased $Ca^{++}-ATPase$ activity of red blood cell ghosts slightly but above S mM benzyl alcohol inhibited the $Ca^{++}-ATPase$ activity. 5) Benzyl alcohol at concentrations of 5 mM and 10 mM increased $Ca^{++}-ATPase$ activity slightly at rat gastrocnemius muscle S.R. but above 10 mM benzyl alcohol inhibited the $Ca^{++}-ATPase$ activity. Above results indicate that benzyl alcohol inhibit water permeability and $Ca^{++}$ transport across cell membranes in part via effects on the fluidity and transition temperatures of the bulk lipid by preferential intercalation into cytoplasmic monolayer and in part via other effect on the conformational change of active sites of the $Ca^{++}-ATPase$ molecule extended in cytoplasmic face.

  • PDF

The Distribution of Barbiturates in Model Membranes of Total Lipids and Total Phospholipids Extracted from Brain Membranes

  • Park, Chang-Sik;Lee, Seong-Moon;Chung, In-Kyo;Kim, Jin-Bom;Son, Woo-Sung;Jang, Hye-Ock;Yun, Il
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.221-227
    • /
    • 2000
  • The distribution of barbiturates in the model membranes of total lipids (SPMVTL) and total phospholipids (SPMVPL) extracted from synaptosomal plasma membrane vesicles was determined by employing a fluorescent probe technique. The two fluorescent probes 2-(9-anthroyl)stearic acid and 12-(9-anthroyl)stearic acid were utilized as probes for the surface and the hydrocarbon interior of the outer monolayer of the SPMVTL and SPMVPL, respectively. The Stern-Volmer equation of fluorescent quenching was modified to calculate the relative distribution. The analysis of preferential quenching of these probes by barbiturates indicates that pentobarbital, hexobarbital, amobarbital and phenobarbital are predominantly distributed on the surface area, while thiopental sodium has an accessibility to the hydrocarbon interior of the outer monolayer of the SPMVTL and SPMVPL. From these results, it is strongly suggested that the more effective penetration into the hydrocarbon interior of the outer monolayer of the membrane lipid bilayer could result in a higher general anesthetic activity.

  • PDF

Effect of Cholesterol on the Phase Change of Lipid Membranes by Antimicrobial Peptides

  • Choi, Hyungkeun;Kim, Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1317-1322
    • /
    • 2014
  • Membrane disruption by an antimicrobial peptide (AMP) was investigated by measuring the $^2H$ solid-state nuclear magnetic resonance spectra of 1-palmitoyl-$d_{31}$-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC_$d_{31}$) in mixtures of POPC_$d_{31}$/cholesterol and either magainin 2 or aurein 3.3 deposited on thin cover-glass plates. The line shapes of the experimental $^2H$ solid-state nuclear magnetic resonance (SSNMR) spectra were best simulated by assuming the coexistence of a mosaic spread of bilayers containing pore structures and a fasttumbling isotropic phase or a hexagonal phase. Within a few days of incubation in a hydration chamber, an isotropic phase and a pore structure were induced by magainin 2, while in case of aurein 3.3 only an isotopic phase was induced in the presence of a bilayer phase. After an incubation period of over 100 days, alignment of the bilayers increased and the amount of the pore structure decreased in case of magainin 2. In contrast with magainin 2, aurein 3.3 induced a hexagonal phase at the peptide-to-lipid ratio of 1/20 and, interestingly, cholesterol was not found in the hexagonal phase induced by aurein 3.3. The experimental results indicate that magainin 2 is more effective in disrupting lipid bilayers containing cholesterol than aurein 3.3.