• Title/Summary/Keyword: lipid hydrolysis

Search Result 95, Processing Time 0.027 seconds

Characterization of Fatty Acids Extracted from Brachionus rotundiformis Using Lipase-catalyzed Hydrolysis

  • Lee, Jung-Kwon;Kim, Se-Kwon;Byun, Hee-Guk
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.1
    • /
    • pp.16-23
    • /
    • 2009
  • Lipids were extracted from marine rotifer, Brachionus rotundiformis in order to examine the functionality of lipid enzymatic modification. The fatty acids, palmitic, linoleic, oleic and stearic acids were the dominant forms accounting for approximately 35.8%, 21.5%, 15.9% and 7.7% of the total lipid content, respectively. Lipid fractions were categorized as neutral lipids (38.5%), glycolipids (45.9%) and phospholipids (17.6%), and after extraction from the rotifer were isolated by thin-layer chromatography (TLC) as free fatty acids (FFA), monoacylglycerol (MAG), diacylglycerol (DAG) and triacylglycerol (TAG). The production of polyunsaturated fatty acid (PUFA) concentrate from rotifer lipids was studied using lipase-catalyzed hydrolysis. In addition, rotifer lipids were modified by hydrolysis using lipases such as porcine pancreas, Candida rugosa and Rhizomucor miehei. The lipase from Rhizomucor miehei was effective in extracting linoleic acid (C 18:2), while the lipase from Candida rugosa was effective in palmitic acid (C16:0) extraction.

Phospholipase $A_{2}$ Activity and Lipid Peroxidation in Liver Microsome of Streptozotocin Induced Diabetic Rats (당뇨쥐의 간 Microsome에서 Phopholipase A_{2} 활성과 지질과산화)

  • 이순재;최정화
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.5
    • /
    • pp.908-913
    • /
    • 1997
  • The purpose of this study was to investigate phospholipase $A_{2}$ activity and lipid peroxidation I streptozotocin induced diabetic rats. Sprague-Dawley male rats weighting-Dawley male rats weighting 300$\pm$10gm were randomly assigned to normal and STZ-induced diabetic group. Diabetes was induced by intravenous injection of 55mg/kg of STZ in sodium citrate buffer(pH 4.3). Animals were sacrificed at the 6th day of diabetic states. Body weight gains were lower in DM group. Phosphatidylcholine hydrolysis in liver was not significantly different between two groups, whereas phosphatidylethanolamine hydrolysis in liver was increased by 69% in DM group comparing with that of normal group. Liver microsomal phospholipase $A_{2}$ activity and level of TBARS was increased by 91%, 109% in DM group compared with that of normal group, respectively. The present results indicate that phospholipase $A_{2}$ activity is specific to PE hydrolysis, leading to lipid peroxidation process in STZ induced diabetic rats.

  • PDF

The Regulation of Lipolysis in Adipose Tissue

  • Serr, Julie;Li, Xiang;Lee, Kichoon
    • Journal of Animal Science and Technology
    • /
    • v.55 no.4
    • /
    • pp.303-314
    • /
    • 2013
  • Knowledge regarding lipid catabolism has been of great interest in the field of animal sciences. In the livestock industry, excess fat accretion in meat is costly to the producer and undesirable to the consumer. However, intramuscular fat (marbling) is desirable to enhance carcass and product quality. The manipulation of lipid content to meet the goals of animal production requires an understanding of the detailed mechanisms of lipid catabolism to help meticulously design nutritional, pharmacological, and physiological approaches to regulate fat accretion. The concept of a basic system of lipases and their co-regulators has been identified. The major lipases cleave triacylglycerol (TAG) stored in lipid droplets in a sequential manner. In adipose tissue, adipose triglyceride lipase (ATGL) performs the first and rate-limiting step of TAG breakdown through hydrolysis at the sn-1 position of TAG to release a non-esterified fatty acid (NEFA) and diacylglycerol (DAG). Subsequently, cleavage of DAG occurs via the rate-limiting enzyme hormone-sensitive lipase (HSL) for DAG catabolism, which is followed by monoglyceride lipase (MGL) for monoacylglycerol (MAG) hydrolysis. Recent identification of the co-activator (Comparative Gene Identification-58) and inhibitor [G(0)/G(1) Switch Gene 2] of ATGL have helped elucidate this important initial step of TAG breakdown, while also generating more questions. Additionally, the roles of these lipolysis-related enzymes in muscle, liver and skin tissue have also been found to be of great importance for the investigation of systemic lipolytic regulation.

Hydrolysis of Olive Oil by Lipase, Immobilized on Hydrophobic Support

  • Jung, Ju-Young;Yun, Hyun-Shik;Kim, Eun-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.2
    • /
    • pp.151-156
    • /
    • 1997
  • Two commercially available lipases, Lipase OF (non-specific lipase from Candida rugosa) and Lipolase 100T (1, 3-specific lipase from Aspergillus niger), were immobilized on insoluble hydrophobic support HDPE (high density polyethylene) by the physical adsorption method. Hydrolysis performance was enhanced by mixing a non-specific Lipase OF and a 1, 3-specific Lipolase 100T at a 2 : 1 ratio. The results also showed that the immobilized lipase maintained its activity at broader temperature ($25~55^{\circ}C$) and pH (4-8) ranges than soluble lipases. In the presence of organic solvent (isooctane), the immobilized lipase retained most of its activity in upto 12 runs of hydrolysis experiment. However, without organic solvent in the reaction mixture, the immobilized lipase maintained most of its activity even after 20 runs of hydrolysis experiment.

  • PDF

Effects of Gelatin Hydrolysates Addition on Technological Properties and Lipid Oxidation of Cooked Sausage

  • Ham, Youn-Kyung;Song, Dong-Heon;Noh, Sin-Woo;Gu, Tae-Wan;Lee, Jae-Hyeok;Kim, Tae-Kyung;Choi, Yun-Sang;Kim, Hyun-Wook
    • Food Science of Animal Resources
    • /
    • v.40 no.6
    • /
    • pp.1033-1043
    • /
    • 2020
  • This study investigated the impacts of gelatin hydrolysate addition on the technological properties and lipid oxidation stability of cooked sausage. Gelatin hydrolysate was prepared from pork and duck skin gelatin, through stepwise hydrolysis using collagenase and pepsin. The cooked sausages were formulated without gelatin (control) or with 1% pork skin gelatin, 1% duck skin gelatin, 1% pork skin gelatin hydrolysate, and 1% duck skin gelatin hydrolysate. The pH, color characteristics, protein solubility, cooking loss, and textural properties of cooked sausages were evaluated, and the 2-thiobarbituric acid reactive substances (TBARS) value was measured weekly to determine lipid oxidation stability during 4 wk of refrigerated storage. Enzymatic hydrolysis of gelatin decreased protein content and CIE L* but increased redness and yellowness (p<0.05). When 1% gelatin or gelatin hydrolysate was incorporated in cooked sausage, however, little to no impacts on pH value, moisture content, protein content, color characteristics, protein solubility, and cooking loss were found (p>0.05). The addition of 1% duck skin gelatin hydrolysate increased the cohesiveness and chewiness of cooked sausages. The inclusion of 1% duck skin gelatin accelerated lipid oxidation of cooked sausages during refrigerated storage (p<0.05), whereas duck skin gelatin hydrolysate caused a lower TBARS value in cooked sausage compared to duck skin gelatin. The results show comparable effects of gelatin and gelatin hydrolysate addition on the technological properties of cooked sausages; however, the oxidative stability of raw materials for gelatin extraction should be evaluated clearly in further studies.

Characterization of Lipid Binding Region of Lipoprotein Lipase

  • Lee, Jae-Bok;Kim, Tae-Woong
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.2
    • /
    • pp.139-144
    • /
    • 1999
  • Lipoprotein lipase (LPL) I san enzyme that catalyzed the hydrolysis of triacylglycerols of chylomicrons and VLDL to produce 20acylglycerols and fatty acids. The enzyme, LPL, is localized on the surface of the capillary endothelium and is widely distributed in extrahepatic tissues including heart, skeletal muscle and adipose tissue. LPL has been isolated from boving milk by affinity chromatography on heparin-separose in 2 M NaCL, 5mM barbital buffer, pH 7.4. To elucidate the lipid-binding regin, LPL was digested with trypsin and then separated by gel filtration. Lipid binding region of LPL has been investigated by recombining LPL peptides with DMPC vesicles. Proteolytic LPL fragments with DMPC were reassembled and stabilized by cholate. Lipid-binding region of LPL was identified by a PTH-automated protein sequencer, as AQQHYPVSAGYTK. The analysis of the secondary structure of the lipid-binding peptides revealed a higher probability of $\alpha$-helix structure compared to the whole LPL protein. The prediction of hydrophobicity of lipid -binding region was highly hydrophobic (-1.1) compared to LPL polypetide(-0.4).

  • PDF

Characteristics of Amylose-Lipid and Cyclodextrin-Lipid Complexes (Amylose와 Cyclodextrin 및 Lipid의 Complex 형성 특성)

  • Rho, Hoe-Jin;Park, Chun-Soek;Kweon, Mee-Ra;Moon, Tae-Wha;Park, Kwan-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.117-122
    • /
    • 1994
  • The characteristics of amylose-lipid complex(AL-complex) and cyclodextirn-lipid complex(CL-complex) were investigated by using Differential Scanning Calorimetry(DSC). The enzymatic hydrolysis of amylose which was liberated from AL-complex by the addtion of ${\beta}-cyclodextrin({\beta}-CD)$was also studied. The melting temperatures of AL-complex in corn, wheat, and rice starch were above $100^{\circ}C$ and there were no differences among them. In the presence of lysolecithin, the melting enthalpy and temperature of AL-complex were increased and lysolecithin was very effective in the formation of AL-complex. When ${\beta}-CD$ was added to AL-complex, the endothermic peak of AL-complex at $100^{\circ}C$ decreased and that of CL-complex at $70^{\circ}C$ appeared. These results indicated that the amylose was released from AL-complex by substituting ${\beta}-CD$ for amylose, then by forming CL-complex. As the added amount of ${\beta}-CD$ increased, the peak of AL-complex decreased whereas that of CL-complex increased. Enzymatic hydrolysis rate of AL-complex increased in the presence of ${\beta}-CD$, suggesting that amylose was dissociated from AL-complex and hydrolyzed by amylase.

  • PDF

Lipid Composition and Oxidation of Wheat Flour Stored at Various Water Activities (여러 수분활성도에서 저장된 밀가루의 지질 조성 및 산화)

  • Lee, Yoo-Sung;Choe, Eun-Ok
    • Korean journal of food and cookery science
    • /
    • v.23 no.2 s.98
    • /
    • pp.180-186
    • /
    • 2007
  • In this study, we examined the effects of different water activities (Aw: 0.3, 0.5, and 0.8) on the lipid composition and oxidation of wheat flour after 28 days of storage in the dark at $60^{\circ}$C. The lipid content of the flour was 2.7%, and had decreased significantly (p<0.05) at the end of the storage period. Decrease in monoacylglycerol and increase in free fatty acids were observed, however, phosphatidic acid, phosphatidylglycerol, and phosphatidylinositiol were not detected after storage. Phosphatidylehtanolamine was more stable than phosphatidylcholine during the dark storage of flour. The flour lipids consisted of palmitic (18%), stearic (1%), oleic (14%), linoleic (63%), and linolenic (4%) acids, and the relative content of linolenic acid decreased after 28 days of storage. The conjugated dienoic acid content of the flour lipid had increased due to lipid oxidation during dark storage. Hydrolysis of neutral lipids and glycolipids, and lipid oxidation, were higher in the flour stored at Aw 0.8 than in the flour stored at Aw 0.3 or 0.5.

Production of Fermentable Sugar from Lipid Extracted Algae using Hot Water Pretreatment (열수전처리를 이용한 탈지미세조류로부터 발효당 생산 공정 개발)

  • Lee, Jihyun;Shin, Seulgi;Choi, Kanghoon;Jo, Jaemin;Kim, JinWoo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.443-447
    • /
    • 2016
  • The microalgae have cellulose as a main structural component of their cell wall and the lignin content in microalgae is much lower than other lignocellulosic biomass. Therefore, fermentable sugar production from microalgae (Tetraselmis KCTC 12236BP) can be carried out under pretreatment without high temperature and high pressure. It was investigated that the effect of hot-water pretreatment using sulfuric acid for lipid extracted algae which is expected to be a next generation biomass. The effects of three major variables including extraction temperature, acid concentration and time on the enzymatic hydrolysis were investigated. Among the tested variables, temperature and acid concentration showed significant effects and optimum pretreatment conditions for the economic operation criteria were obtained as follows: reaction temperature of $120^{\circ}C$, sulfuric acid concentration of 2 mol and pretreatment time of 40 min. Under the optimum conditions of acidic hot water pretreatment, experimentally obtained hydrolysis yield were 95.9% which showed about 2.1 fold higher compared with enzymatic hydrolysis process. Therefore, acid pretreatment under mild condition was proven to be an effective method for fermentable sugar production from lipid extracted microalgae.

Optimization of ultrasonic-assisted enzymatic hydrolysis conditions for the production of antioxidant hydrolysates from porcine liver by using response surface methodology

  • Yu, Hui-Chuan;Tan, Fa-Jui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.11
    • /
    • pp.1612-1619
    • /
    • 2017
  • Objective: The objective of this study was to optimize ultrasonic-assisted enzymatic hydrolysis conditions, including enzyme-to-substrate (E/S) ratio, pH, and temperature, for producing porcine liver hydrolysates (PLHs) with the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity by using response surface methodology (RSM). Methods: The study used RSM to determine the combination of hydrolysis parameters that maximized the antioxidant activity of our PLHs. Temperature ($40^{\circ}C$, $54^{\circ}C$, and $68^{\circ}C$), pH (8.5, 9.5, and 10.5), and E/S ratio (0.1%, 2.1%, and 4.1%) were selected as the independent variables and analyzed according to the preliminary experiment results, whereas DPPH free radical scavenging activity was selected as the dependent variable. Results: Analysis of variance showed that E/S ratio, pH, and temperature significantly affected the hydrolysis process (p<0.01). The optimal conditions for producing PLHs with the highest scavenging activity were as follows: E/S ratio, 1.4% (v/w); temperature, $55.5^{\circ}C$; and initial pH, 10.15. Under these conditions, the degree of hydrolysis, DPPH free radical scavenging activity, ferrous ion chelating ability, and reducing power of PLHs were 24.12%, 79%, 98.18%, and 0.601 absorbance unit, respectively. The molecular weight of most PLHs produced under these optimal conditions was less than 5,400 Da and contained 45.7% hydrophobic amino acids. Conclusion: Ultrasonic-assisted enzymatic hydrolysis can be applied to obtain favorable antioxidant hydrolysates from porcine liver with potential applications in food products for preventing lipid oxidation.