• Title/Summary/Keyword: lipase producing yeast

Search Result 13, Processing Time 0.02 seconds

Potential Yeast from Indonesian Wild Forest Honey Showing Ability to Produce Lipase for Lipid Transesterification

  • Palilu, Prayolga Toban;Kasiamdari, Rina Sri;Ilmi, Miftahul
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.555-564
    • /
    • 2019
  • Biodiesel is produced through the transesterification process in the presence of alcohol and a catalyst that catalyzes the conversion of triglycerides to esters and glycerol compounds. A more optimal product conversion can be achieved using enzymes, such as lipase. Lipase is reported to be produced in osmophilic yeasts due to the low water content in their natural habitats. Wild forest honey is one of the osmophilic natural habitats in Indonesia. However, lipase-producing yeast has not been reported in the Indonesian honey. In this study, we screened the lipase-producing yeasts isolated from wild forest honey collected from Central Sulawesi. The production profile and activity of lipase were determined at different pH values and temperatures. One promising yeast was isolated from the honey, which was identified as Zygosaccharomyces mellis SG 1.2 based on ITS sequence. The maximum lipase production (24.56 ± 1.30 U/mg biomass) was achieved by culturing the strain in a medium containing 2% olive oil as a carbon source at pH 7 and 30℃ for 40 h. The optimum pH and temperature for lipase activity were 6 and 55℃, respectively. The enzyme maintained 80% of its activity upon incubation at 25℃ for 4 h. However, the enzyme activity decreased by more than 50% upon incubation at 35 and 40℃ for 2 h. This is the first study to report the lipase producing capability of Z. mellis. Further studies are needed to optimize the enzyme production.

Isolation of Lipase Producing Yeast and Optimization of Cultivation Condition (Lipase 생산 효모균주의 분리 및 배양조건 최적화)

  • 박명훈;류현진;오경근
    • KSBB Journal
    • /
    • v.19 no.2
    • /
    • pp.148-153
    • /
    • 2004
  • Lipase catalyzes the hydrolysis of glycerides into fatty acids and glycerol. The study of microbial lipases has been stimulated in resent years. It is due to the potential uses of lipases in esterification of oils to glycerol, alcohols and carbohydrates. Development of lipase producing yeast has been focused concerning to the utilization of yeast culture for animal feed. In this study, yeast like cells was isolated from a waste oil and sludge. A strain having higher lipase activity was selected by random mutagenesis using UV-radiation. The optimal cultivation conditions in submerged culture were examined in terms of lipase production. 2.0% of high fructose syrup, 1,0% of CSL, and 1.0% of olive oil were selected as the nutritional media for the production of lipase. The maximum lipase activity of 1.12 U/ml and viable cell number of 8.8${\times}$10$\^$7/ cells/mL were obtained at 27$^{\circ}C$ with an initial pH of 5.0.

Screening of Bacteria Producing Lipase from Insect Gut: Isolation and Characterization of a Strain, Burkholderia sp. HY-10 Producing Lipase (곤충 장내미생물로부터 lipase 생산능력이 우수한 Burkholderia sp. HY-10 균주의 분리 및 특성)

  • Park, Doo-Sang;Oh, Hyun-Woo;Bae, Kyung-Sook;Kim, Hyang-Mi;Heo, Sun-Yeon;Kim, Nam-Jung;Seol, Kwang-Youl;Park, Ho-Yong
    • Korean journal of applied entomology
    • /
    • v.46 no.1 s.145
    • /
    • pp.131-139
    • /
    • 2007
  • From the course of screening of useful enzyme producing microorganism from insect guts, we isolated 9 lipase producing strains and their lipase producing activities were tested. 16S rDNA sequence analysis showed that they were Gram negative bacteria grouped on Serratia sp., Pseudomonas sp., and Burkholderia sp.. Among them, an excellent lipase producing strain, Burkholderia sp. HY-10 identified by 16S rDNA analysis and biochemical methods, was further studied its lipase producing characteristics. It was isolated from a longcorm beetle, Prionus insularis and showed cell density dependent lipase producing activity in the culture media that contained olive oil as a carbon source. Maximum lipase production was achieved in the M9 media containing 0.5% yeast extract and 0.5% olive oil when cultured at $30^{\circ}C$ for 36-42 hrs.

New Finding and Optimal Production of a Novel Extracellular Alkaline Lipase from Yarrowia lipolytica NRRL Y-2178

  • Lee, Geon-Ho;Bae, Jae-Han;Suh, Min-Jung;Kim, In-Hwan;Hou, Ching T.;Kim, Hak-Ryul
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1054-1057
    • /
    • 2007
  • Lipases are industrially useful versatile enzymes that catalyze numerous different reactions including hydrolysis of triglycerides, transesterification, and chiral synthesis of esters under natural conditions. Although lipases from various sources have been widely used in industrial applications, such as in food, chemical, pharmaceutical, and detergent industries, there are still substantial current interests in developing new microbial lipases, specifically those functioning in abnormal conditions. We screened 17 lipase-producing yeast strains, which were prescreened for substrate specificity of lipase from more than 500 yeast strains from the Agricultural Research Service Culture Collection (Peoria, IL, U.S.A.), and selected Yarrowia lipolytica NRRL Y-2178 as a best lipase producer. This report presents new finding and optimal production of a novel extracellular alkaline lipase from Y. lipolytica NRRL Y-2178. Optimal culture conditions for lipase production by Y. lipolytica NRRL Y-2178 were 72 h incubation time, $27.5^{\circ}C$, pH 9.0. Glycerol and glucose were efficiently used as the most efficient carbon sources, and a combination of yeast extract and peptone was a good nitrogen source for lipase production by Y. lipolytica NRRL Y-2178. These results suggested that Y. lipolytica NRRL Y-2178 shows good industrial potential as a new alkaline lipase producer.

Optimization of Medium for Lipase Production from Zygosaccharomyces mellis SG1.2 Using Statistical Experiment Design

  • Pramitasari, Marisa Dian;Ilmi, Miftahul
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.337-345
    • /
    • 2021
  • Lipase (triacylglycerol lipase, EC 3.1.1.3) is an enzyme capable of hydrolyzing triacylglycerol, to produce fatty acids and glycerol and reverse the reaction of triacylglycerol synthesis from fatty acids and glycerol through transesterification. Applications of lipase are quite widespread in the industrial sector, including in the detergent, paper, dairy, and food industries, as well as for biodiesel synthesis. Lipases by yeasts have attracted industrial attention because of their fast production times and high stability. In a previous study, a lipase-producing yeast isolate was identified as Zygosaccharomyces mellis SG1.2 and had a productivity of 24.56 U/mg of biomass. This productivity value has the potential to be a new source of lipase, besides Yarrowia lypolitica which has been known as a lipase producer with a productivity of 0.758 U/mg. Lipase production by Z. mellis SG1.2 needs to be increased by optimizing the production medium. The aims of this study were to determine the significant component of the medium for lipase production and methods to increase lipase production using the optimum medium. The two methods used for the statistical optimization of production medium were Taguchi and RSM (Response Surface Methodology). The data obtained were analyzed using Minitab 18 and SPSS 23 software. The most significant factors which affected lipase productivity were olive oil and peptones. The optimum medium composition consisted of 1.02% olive oil, 2.19% peptone, 0.05% MgSO4·7H2O, 0.05% KCl, and 0.2% K2HPO4. The optimum medium was able to increase the lipase productivity of Z. mellis SG1.2 to 1.8-fold times the productivity before optimization.

Studies on the Lipase Produced by Alkalophilic Microorganism (Alkalophilic microorganism이 생산하는 lipase에 관한 연구)

  • Jeong, Kwang-Seon;Ham, Cheol-Joo;Shin, Won-Cheol
    • Journal of Industrial Technology
    • /
    • v.7
    • /
    • pp.59-68
    • /
    • 1987
  • In order to obtain a strain of producing lipase which has resistance against alkaline and detergent, a screening test was carried out. Among 500 strains isolated from soil samples, the strain J-19 was selected for this study. The composition of the optimum medium for the highest lipase production was 2.0% glycerin, 1.0% corn steep liquor, 2.0% yeast extract, 0.1% $MgSO_4$ $7H_2O$, 0.2% $K_2HPO_4$, 1.5% soybean oil and 0.1% LAS(linear alkylbenzene sulfonate) with initial pH value of 10.0 and 3-day cultivation at $25^{\circ}C$. The lipase activity of the strain J-19 under optimal condition was 3.3. units/ml, which was increased about 1.3-fold than that of basal medium.

  • PDF

The Isolation and Culture Characterization of a Lipolytic Enzyme Producing Strain from Meju (메주로부터 지질분해 효소 생산 균주의 분리 및 배양학적 특성)

  • Yun, Hye-Ju;Lee, You-Jung;Yeo, Soo-Hwan;Choi, Hye-Sun;Park, Hye-Young;Park, Heui-Dong;Baek, Seong-Yeol
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.2
    • /
    • pp.98-103
    • /
    • 2012
  • For screening of useful enzymes producing microorganisms from Meju, we isolated high lipase producing strains and their lipolytic enzyme activities were then tested. The lipolytic enzyme activities of isolated microorganisms were therefore tested on the Y124 strain. The gene sequence analysis of ITS from Y124 strain revealed Yarrowia lipolytica. Lipase production by the Y124 strain was studied in media containing various carbon sources. The Y124 strain drastically increased lipolytic enzyme activity in YPO media containing olive oil, as well as in YPDO media containing both olive oil and glucose. Maximal lipase production was achieved in YPD (yeast extract-peptone-D-glucose) media containing 0.7% olive oil when cultured at $30^{\circ}C$ for 8 hrs. The lipase produced from the Y124 strain showed the highest activity in p-NPO (p-nitrophenyl octanoate ($C_8$)), amongst the various p-nitrophenyl esters.

Production and Purification of Alkaline Lipase from Serratia sp. AL-11 (Serratia sp. AL-11이 생산하는 Alkaline Lipase의 생산 및 정제)

  • Choi, Cheong;Kim, Tae-Wan;Cho, Young-Je
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.695-701
    • /
    • 1995
  • An alkaline lipase producing bacteria was isolated from soil and identified as Serratia liquefaciens AL-11. from the results of analysis of its morphological, biochemical and physiological properties. This strain showed the highest productivity of alkaline lipase when grown at pH 9.0 and 30$\circ$C for 42 hours in the medium of 1% peptone, 0.5% tryptone, 0.9% yeast extract, 1% starch, 1% tween 80, 0.05% CaCl$_{2}$ and 0.05% NaCl. The enzyme was purified by ammonium sulfate treatment, Sephadex G-100 gel filtration and DEAE-Sephadex A-50 column chromatography. The specific activity of the purified enzyme was 27 unit/mg protein and the yield of enzyme activity was 61.3%. The homogeneity of the purified enzyme was verified by polyacrylamide gel disc electrophoresis. Molecular weight of the purified enzyme was estimated about 53,000 by sodium dodecyl sulfate- polyacrylamide gel electrophoresis. This enzyme is composed of 17 amino acids of which glycine, proline and glutamic acid were three miajor acids.

  • PDF

Isolation and Identification of Lipolytic Enzyme Producing Pseudomonas sp. OME and Optimization of Cultural Conditions (지방분해효소 생산균 Pseudomonas sp. OME 의 분리 동정 및 배양조건 최적화)

  • Kumar, G.Satheesh;Reddy, T. Kiran;Madhavi, B.;Teja, P.Charan;Chandra, M.Subhosh;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.662-669
    • /
    • 2010
  • Lipolytic enzyme-producing bacteria were isolated from edible oil mill effluents on tributyrin agar medium. The shake-flask-scale studies yielded a promising isolate and it was identified as Pseudomonas sp. An OME using various microbiological observations such as cultural, microscopic, and biochemical tests was undertaken and confirmed using PIBWIN bacterial identification software. Lipolytic enzyme production was screened with oils such as sunflower, caster, coconut, tributyrin, and olive. Amongst these, olive oil showed an increased lipase production 6.1 U/ml. In view of the highest lipolytic enzyme production with olive oil, further optimizations were carried out using olive oil as a carbon source. Lipolytic enzyme production was optimized by a conventional 'one variable at a time' approach and the significant factors were further analyzed statistically using response surface methodology (RSM). The effect of physical factors such as incubation time, temperature, initial medium pH, and nutritional factors such as concentration of olive oil and yeast extract were examined for lipase production. Lipolytic enzyme secretion was strongly affected by three variables (incubation time, concentration of yeast extract and olive oil). Therefore, the interaction of these three factors was further optimized using response surface methodology. The optimized conditions of lipase production using response surface methodology yielded a maximum of 9.62 U/ml with optimum conditions for incubation, yeast extract and olive oil concentrations were found to be 48 hr, 0.3 g. and 0.9 ml. respectively.

Degradation of Fat, Oil, and Grease (FOGs) by Lipase-Producing Bacterium Pseudomonas sp. Strain D2D3

  • Shon, Ho-Kyong;Tian, Dan;Kwon, Dae-Young;Jin, Chang-Suk;Lee, Tae-Jong;Chung, Wook-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.583-591
    • /
    • 2002
  • Biodegradation of fat, oil, and grease (FOGs) plays an Important role in wastewater management and water pollution control. However, many industrial food-processing and food restaurants generate FOG-containing waste waters for which there Is no acceptable technology for their pretreatment. To solve these problems, this study evaluated the feasibility of effective FOG-degrading microorganisms on the biodegradation of olive oil and FOG-containing wastewater. Twenty-two strains capable of degrading FOGs were isolated from five FOG-contaminated sites for the evaluation of their FOG degradation capabilities. Among twenty-two strains tested, the lipase-producing Pseudomonas sp. strain D2D3 was selected for actual FOG wastewater treatment. Its biodegradability was performed at 3$0^{\circ}C$ and pH 8. The extent of FOG removal efficiency was varied for each FOG tested, being the highest for olive oil and animal fat (94.5% and 94.4%), and the lowest for safflower oil (62%). The addition of organic nitrogen sources such as yeast extract, soytone, and peptone enhanced the removal efficiency of FOGs, but the addition of the inorganic nitrogen nutrients such as $NH_4$Cl and $(NH_4)_2SO_4$ did not increase. The $KH_2PO_4$ sources in 0.25% to 0.5% concentrations showed more than 90% degradability. As a result, the main pathway for the oxidation of fatty acids results in the removal of two carbon atoms as acetyl-CoA with each reaction sequence: $\beta$-oxidation. Its lipase activity showed 38.5 U/g DCW using the optimal media after 9 h. Real wastewater and FOGs were used for determining the removal efficiency by using Pseudomonas sp. strain D2D3 bioadditive. The degradation by Pseudomonas sp. strain D2D3 was 41% higher than that of the naturally occurring bacteria. This result indicated that the use of isolated Pseudomonas sp. strain D2D3 in a bioaugmentating grease trap or other processes might possibly be sufficient to acclimate biological processes for degrading FOGs.