• Title/Summary/Keyword: linseed

Search Result 102, Processing Time 0.018 seconds

Screening Methods for Plant-Coating Materials and Transpiration Inhibitory Effect of Soybean Oil to Crops (식물 코팅 소재 선발법과 작물들에 대한 콩 오일의 증산 억제 효과)

  • Jung, In Hong;Park, No Bong;Kim, Sang-Yeol;Na, Young-Eun;Kim, Soon-Il
    • Korean Journal of Plant Resources
    • /
    • v.27 no.4
    • /
    • pp.380-391
    • /
    • 2014
  • Plants as well as crops are damaged by a combination of the hot and dry winds that has been a major factor in the reduction of crop production. A means to protect them from damaging conditions is to consider a coating material. In this study, we established laboratory screening methods to find a coating material to protect a crop from rapid transpiration caused by various factors. In a test measuring the weight loss of kidney bean seedlings for 6 days, Avion treatments decreased its weight loss (P=0.05). Owing to long-time spend in completing this assay, we performed a more simple method using a cobalt chloride paper strip, which changes from blue to red colors under water condition. Beewax, guagum, paraffin liquid, soybean oil, and PE-635 gave a waterproofing effect above 37 and 43% at 0.5 and 1 h after treatment, respectively. However, these tested materials did not show significant waterproofing results at 2 h. Although the methods produced reasonable results, a screening method to obtain more objective data is needed. An alternative is to use an instrument that can detect the transpiration of crop leaves. In a preliminary test using barley leaves, a portable photosynthesis system showed transpiration inhibition of 2% soybean oil and 10 times-diluted Avion under field conditions. In another test using the leaves of maize seedlings and apricot tree, 2% liquid paraffin and plant oils such as apricot oil, linseed oil, olive oil, and soybean oil showed significant transpiration inhibition (P=0.05). Especially, paraffin liquid and soybean oil selected from above tests gave good transpiration inhibitory effects against rice at 2%. In addition, the mixture of 2% soybean oil and a spreader showed more elevated inhibition results comparing with soybean oil or the spreader alone indicating that the spreader may be attributed to more uniform diffusion of the hydrophobic material onto the leaf surface of maize seedlings. The hydrophobic material coated physically the stomata and cuticle layers on leaf surfaces of rice. These hydrophobic materials screened in this study are expected to be used as plant coating materials.

Studies on Requirements of Optimum Dietary Essential Fatty Acids in Juvenile Eel, Anguilla japonica (치어기 뱀장어의 사료내 필수지방산 요구량에 관한 연구)

  • 배준영;한경민;박건준;배승철
    • Journal of Aquaculture
    • /
    • v.17 no.4
    • /
    • pp.275-281
    • /
    • 2004
  • The present study was conducted to evaluate dietary requirements for essential fatty acids (EFAs) such as linoleic acid (LA, l8:2n-6), -lenolenic acid (LNA, 18:3n-3), or docosahexaenoic acid (DHA, 22:6n-3), eicosapentaenoic acid (EPA, 20:5n-3) and arachidonic acid (ARA, 20:4n-6) in juvenile eel Anguilla japonica cultured in a recirculating system for 16 weeks. The experimental diets contained 50% crude protein, 10% crude lipid and 3800 kcal/kg energy.Brown fish meal and blood meal were used as the main protein sources, while coconut oil, com oil and linseed oil were used as the lipid source to yield target fatty acids ratios. At the end of the trial, the effects of essential fatty acids supplementation on weight gain (WG), specific growth rate (SGR), feeding efficiency (FE), proximate composition andwhole body fatty acids contents were examined. WG, SGR, and FEof eels fed diet D2, D3, was significantly higher (P<0.05) than those of fish fed the other diets. Whole body HUFA concentration of eels fed D 1 was significantly lower (P<0.05) than those fed the other diets. HUFA/SFA (saturated fatty acids) ratio of whole body in eels fed diets D2, D3 and D6 were significantly higher than that of eels fed diet D1 (P<0.05).DHA/EPA ratio of whole body in eels fed diet D7was significantly higher than those fed the other diets; and eels fed diet D5 showed the lowest DHA/EPA ratio among all the dietary treatments (P<0.05).Based on the experimental results, we concluded that LNA (n-3) and LA (n-6) were necessary for optimum growth of juvenile eel, and the dietary requirement of LNA and LA were 0.35∼0.5% and 0.5∼0.65%, respectively.