• Title/Summary/Keyword: linkage seed

Search Result 42, Processing Time 0.024 seconds

QTL Analysis of Soybean Seed Weight Using RAPD and SSR Markers

  • Chung, Jong-Il;Ko, Mi-Suk;Kang, Jin-Ho
    • Plant Resources
    • /
    • v.3 no.3
    • /
    • pp.184-193
    • /
    • 2000
  • Soybean [Glycine max (L.) Merr.] seed weight is a important trait in cultivar development. Objective of this study was to identify and confirm quantitative trait loci (QTLs) for seed weight variation in the F2 and F2:3 generations. QTLs for seed weight were identified in F2 and F2:3 generations using interval mapping (MapMaker/QTL) and single-factor analysis of variance (ANOVA). In the F2 plant generation (i.e., F3 seed), three markers, OPL9a, OPM7a, and OPAC12 were significantly (P<0.01) associated with seed weight QTLs. In the F2:3 plant row generation (i.e., F4 seed), five markers, OPA9a, OPG19, OPL9b, OPP11, and Sat_085 were significantly (P<0.01) associated with seed weight QTLs. Two markers, OPL9a and OPL9b were significantly (P<0.05) associated with seed weight QTLs in both generations. Two QTLs on USDA soybean linkage group C1 and R were identified in both F2 and F2:3 generations using interval mapping. The linkage group C1 QTL explained 16% of the variation in seed weight in both generations, and the linkage group R QTL explained 39% and 41% of the variation for F2 and F2:3 generation, respectively. The linkage group C2 QTL identified in F2:3 generation explained 14.9% of variation. Linkage groups C1, C2 and R had previously been identified as harbouring seed size QTLs. The consistency of QTLs across generations and populations indicates that marker-assisted selection is possible in a soybean breeding program.

  • PDF

Identification of Quantitative Trait Loci Associated with Seed Size and Weight in Soybean

  • Kim, Hong-Sik;Lee, Suk-Ha;Park, Keum-Yong;Lee, Yeong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.4
    • /
    • pp.227-231
    • /
    • 2000
  • Small seed size is one of the major traits of soybean cultivars for sprouts with regard to high sprout yield. This study was conducted to identify quantitative trait loci (QTL) for seed size and weight in a set of F 6 seeds of 89 lines derived from a cross between 'Pureunkong', a soybean cultivar developed for sprouts and 'Jinpumkong 2', a soybean cultivar with no beany taste in seed due to the lack of lipoxygenases. The genetic map of 25 linkage groups with a total of 98 markers including RFLP, RAPD, SSR and classical markers was constructed from this F/sbu 5/-derived population and was used for QTL analysis. 'Pureunkong' was significantly smaller (P<0.01) than 'Jinpumkong 2' in seed size and seed weight. Genetic variation was detected and transgressive segregation was common in the population for these traits. Seven DNA markers including opT14-1600 in LG A2, opF02-400 in LG B2, Satt100, opC09-700, opG04-730 and opQll-650 in LG C2, and opY07-1100 & 1000 in LG(unknown) were significantly associated and accounted for 4.7 to 10.9% and 5.1 to 10.1 % of the phenotypic variation in seed size and seed weight, respectively. 'Pureunkong' alleles increased seed size and seed weight at the all four significant marker loci on the LG C2. These marker loci in LG C2 were closely linked and were presumed to be a single QTL. Overall, at least three independent QTLs from 3 linkage groups (A2, B2, and C2) were putatively involved in the control of seed size and seed weight.

  • PDF

Inheritance between Le Gene and Ti Gene in Soybean (Glycine max L.)

  • Lee, Kyoung Ja;Park, Mo Se;Sung, Mi Kyung;Kim, Myung Sik;Chung, Jong Il
    • Korean Journal of Breeding Science
    • /
    • v.40 no.2
    • /
    • pp.97-100
    • /
    • 2008
  • Lectin protein and Kunitz trypsin inhibitor (KTI) protein of mature soybean seed are a main antinutritional factor in soybean seed. The Le gene controls a lectin protein and Ti gene controls the KTI protein in soybean. Ti locus has been located on linkage group 9 in the classical linkage map of soybean. Position of Le locus on linkage map was not identified. Genetic relationship between Ti locus and Le locus could be useful in soybean breeding program for the genetic elimination of these factors. The objective of this study was to determine the independent inheritance or linkage between Ti locus and Le locus in soybean seed. Two $F_2$ populations were developed from three parents (Gaechuck#1, T102, and PI548415). The $F_1$ seeds from Gaechuck#1 (titiLeLe) ${\times}$ T102 (TiTilele) and Gaechuck#1 (titiLeLe) ${\times}$ PI548415 (TiTilele) were obtained. The lectin and KTI protein were analysed from $F_2$ seeds harvested from the $F_1$ plants to find independent assortment or linkage between Ti locus and Le locus. The segregation ratios of 3 : 1 for Le locus (129 Le_ : 44 lele) and Ti locus (132 Ti_ : 41 titi) and were observed. The segregation ratios of 9 : 3 : 3 : 1 (95 Le_Li_ : 34 Le_titi: 37 leleTi_ : 7 leletiti) between Le gene and Ti gene in $F_2$ seeds were observed. This data showed that Ti gene was inherited independently with the Le gene in soybean. These results will be helpful in breeding program for selecting the line with lacking both KTI and lectin protein in soybean.

A CRL Distribution Scheme Minimizing the Time for CRL Processing of Vehicles on Vehicular Communications

  • Kim, Hyun-Gon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.73-80
    • /
    • 2018
  • Certification revocation list(CRL) is needed for excluding compromised, faulty, illegitimate vehicle nodes and preventing the use of compromised cryptographic materials in vehicular communications. It should be distributed to vehicles resource-efficiently and CRL computational load of vehicles should not impact on life-critical applications with delay sensitive nature such as the pre-crash sensing that affords under 50msec latency. However, in the existing scheme, when a vehicle receives CRL, the vehicle calculates linkage values from linkage seeds, which results in heavy computational load. This paper proposes, a new CRL distribution scheme is proposed, which minimizes the time for CRL processing of vehicles. In the proposed scheme, the linkage value calculation procedure is performed by road-side unit(RSU) instead of the vehicle, and then the extracted linkage values are relayed to the vehicle transparently. The simulation results show that the proposed scheme reduces the CRL computational load dramatically, which would minimize impact on life-critical applications' operations with low latency.

Identification of the quantitative trait loci (QTL) for seed protein and oil content in soybean.

  • Jeong, Namhee;Park, Soo-Kwon;Ok, Hyun-Choong;Kim, Dool-Yi;Kim, Jae-Hyun;Choi, Man-Soo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.148-148
    • /
    • 2017
  • Soybean is an important economical resource of protein and oil for human and animals. The genetic basis of seed protein and oil content has been separately characterized in soybean. However, the genetic relationship between seed protein and oil content remains to be elucidated. In this study, we used a combined analysis of phenotypic correlation and linkage mapping to dissect the relationship between seed protein and oil content. A $F_{10:11}$ RIL population containing 222 lines, derived from the cross between two Korean soybean cultivars Seadanbaek as female and Neulchan as male parent, were used in this experiment. Soybean seed analyzed were harvested in three different experimental environments. A genetic linkage map was constructed with 180K SoyaSNP Chip and QTLs of both traits were analyzed using the software QTL IciMapping. QTL analyses for seed protein and oil content were conducted by composite interval mapping across a genome wide genetic map. This study detected four major QTL for oil content located in chromosome 10, 13, 15 and 16 that explained 13.2-19.8% of the phenotypic variation. In addition, 3 major QTL for protein content were detected in chromosome 10, 11 and 16 that explained 40.8~53.2% of the phenotypic variation. A major QTLs was found to be associated with both seed protein and oil content. A major QTL were mapped to soybean chromosomes 16, which were designated qHPO16. These loci have not been previously reported. Our results reveal a signi cant genetic relationship between seed protein and oil fi content traits. The markers linked closely to these major QTLs may be used for selection of soybean varieties with improved seed protein and oil content.

  • PDF

QTL Mapping for Major Agronomic Traits across Two Years in Soybean(Glycine max L. Merr.)

  • Li, Wenxin;Zheng, Da-Hao;Van, Kyu-Jung;Lee, Suk-Ha
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.171-176
    • /
    • 2008
  • The agronomic traits, such as days to flowering and maturity, plant height, 100-seed weight and seed filling period, are quantitatively inherited and important characters in soybean(Glycine max L. Merr.). A total of 126 $F_5$ recombinant inbred lines(RILs) developed from the cross of PI 171451$\times$Hwaeomputkong were used to identify quantitative trait loci(QTLs) for days to flowering(FD), days to maturity(MD), plant height(PH), 100-seed weight(SW), number of branches(NB) and seed filling period(FP). A total of 136 simple sequence repeat(SSR) markers segregated in a RIL population were distributed over 20 linkage groups(LGs), covering 1073.9 cM of the soybean genome with the average distance between adjacent markers of 7.9 cM. Five independent QTLs were identified for FD, three for MD, two for PH, three for SW, one for NB and one for FP. Of these, three QTLs were related to more than two traits of FD, MD, PH, NB and FP and mapped near the same positions on LGs H and O. Thus, these traits could be correlated with biologically controlled major QTLs in this soybean RIL population.

  • PDF

RAPD Loci for Seed Protein and Oil Content in Soybean (Glycine max)

  • / J
    • Korean Journal of Plant Resources
    • /
    • v.10 no.3
    • /
    • pp.247-249
    • /
    • 1997
  • Seed protein and oil content is important trait in the soybean. Both seed protein and oil content in this plant species is inherited quantitatively. A 68-plant $F_2$ segregation population derived from a mating between Mercury and PI 467.468 was evaluated with random amplified polymorphic DNA (RAPD) markers to identify QTL related to seed protein and oil content. Marker OPB12 was found to be associated with differences in seed protein content. Four markers, OPA09b, OPM07b, OPC14, and OPN11b had highly significant effects on seed oil content. By interval mapping, the interval between marker OPK3c and OPQ1b on linkage group 13 contained a QTL that explained 25.7% variation for seed oil content.

  • PDF

Construction of a linkage Map in Capsicum annuum L. Using RAPD Markers and Identification of Two QTLs.

  • Yang, Tae-Jin;Kim, Yong-Jae;Park, Hyo-Guen
    • Journal of Plant Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.109-115
    • /
    • 1999
  • A linkage map of Capsicum annuum L. was constructed by random amplified polymorphic DNA (RAPD) markers followed in a backcross population of an intraspecific cross between cultivars HDA210 and Yatsufusa. A total of 420 random primers were tested and 311 polymorphic bands were generated by 158 random primers. Among them, 86 Yatsufusa specific bands generated by 52 primers were examined for mapping. Most bands except three segregated in Mendelian fashion fitting the expected 1:1 ratio. The total length of the map was 533 cM distributed in 15 linkage groups. The map distance between adjacent markers ranged 0 to 32.8 cM, with an average distance of 9.1 cM (63 markers). Some markers were clustered and this may be due to the amplification of a repetitive sequence by the RAPDs. Primer pairs for a sequence characterized amplified region (SCAR) were developed and the segregation scores by the SCAR primers were in accordance with the RAPD data. Two QTL markers for number of axillary shoots and for early flowering were developed. One QTL for early flowering located in the linkage group 3 and explained 61 "io of the phenotypic variation. The other QTL for the number of axillary shoots located in the linkage group 4 explained 55 % of the phenotypic variation.tion.

  • PDF

Linkage Analysis of the Three Loci Determining Rind Color and Stripe Pattern in Watermelon

  • Yang, Hee-Bum;Park, Sung-woo;Park, Younghoon;Lee, Gung Pyo;Kang, Sun-Cheol;Kim, Yong Kwon
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.559-565
    • /
    • 2015
  • The rind phenotype of watermelon fruits is an important agronomic characteristic in the watermelon market. Inheritance and linkage analyses were performed for three rind-related traits that together determine the rind phenotype: foreground stripe pattern, rind background color, and depth of rind color. The inheritance of the foreground stripe pattern was analyzed using three different $F_2$ populations, showing that the striped pattern is dominant over the non-striped pattern. The inheritance analysis of the rind background color was performed using $F_2$ populations of the '10909' and '109905', and the depth of rind color was analyzed using $F_2$ populations of the '90509' and '109905'. Yellow color was found to be dominant over green color, and a deep color was dominant over the standard color. Linkage analysis of the three traits was conducted using three $F_2$ populations in which two traits were segregating. Each pair of traits was inherited independently, which demonstrated that the three traits are not linked. Therefore, we propose a three-locus model for the determination of rind phenotype, providing novel insight that rind phenotype is determined by the combination of three genetically independent loci.

Identification of Quantitative Trait Loci Associated with Isoflavone Contents in Soybean Seed

  • Kim Myung Sik;Park Min Jung;Hwang Jung Gyu;Jo Soo Ho;Ko Mi Suk;Chung Ill Min;Chung Jong Il
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.5
    • /
    • pp.423-428
    • /
    • 2004
  • Soybean seeds contain high amounts of isoflavones that display biological effects and isoflavone content of soybean seed can vary by year, environment, and genotype. Objective of this study was to identify quantitative trait loci that underlie isoflavone content in soybean seeds. The study involved 85 $F_2$ populations derived from Korean soybean cultivar 'Kwangkyo' and wild type soybean 'IT182305' for QTL analysis associated with isoflavone content. Isoflavone content of seeds was determined by HPLC. The genetic map of 33 linkage groups with 207 markers was constructed. The linkage map spanned 2,607.5 cM across all 33 linkage groups. The average linkage distance between pair of markers among all linkage groups was 12.6 cM in Kosambi map units. Isoflavone content in $F_2$ generations varied in a fashion that suggested a continuous, polygenic inheritance. Eleven markers (4 RAPD, 3 SSR, 4 AFLP) were significantly associated with isoflavone content. Only two markers, Satt419 and CTCGAG3 had F-tests that were significant at P<0.01 in $F_2$ generation for isoflavone content. Interval mapping using the $F_2$ data revealed only two putative QTLs for isoflavone content. The peak QTL region on linkage group 3, which was near OPAG03c, explained $14\%$ variation for isoflavone content. The peak QTL region on linkage group 5, which was located near OPN14 accounted for $35.3\%$ variation for isoflavone content. Using both Map-Maker-QTL $(LOD{\geq}2.0)$ and single-factor analysis $(P{\leq}0.05)$, one marker, CTCGAG3 in linkage group 3 was associated with QTLs for isoflavone content. This information would then be used in identification of QTLs for isoflavone content with precision