• Title/Summary/Keyword: link-prediction

Search Result 193, Processing Time 0.021 seconds

Hydro-Mechanical Modelling of Fault Slip Induced by Water Injection: DECOVALEX-2019 TASK B (Step 1) (유체 주입에 의한 단층의 수리역학적 거동 해석: 국제공동연구 DECOVALEX-2019 Task B 연구 현황(Step 1))

  • Park, Jung-Wook;Park, Eui-Seob;Kim, Taehyun;Lee, Changsoo;Lee, Jaewon
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.400-425
    • /
    • 2018
  • This study presents the research results and current status of the DECOVALEX-2019 project Task B. Task B named 'Fault slip modelling' is aiming at developing a numerical method to simulate the coupled hydro-mechanical behavior of fault, including slip or reactivation, induced by water injection. The first research step of Task B is a benchmark simulation which is designed for the modelling teams to familiarize themselves with the problem and to set up their own codes to reproduce the hydro-mechanical coupling between the fault hydraulic transmissivity and the mechanically-induced displacement. We reproduced the coupled hydro-mechanical process of fault slip using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. A methodology to formulate the hydro-mechanical coupling relations of two different hydraulic aperture models and link the solid element of TOUGH2 and the interface element of FLAC3D was suggested. In addition, we developed a coupling module to update the changes in geometric features (mesh) and hydrological properties of fault caused by water injection at every calculation step for TOUGH-FLAC simulator. Then, the transient responses of the fault, including elastic deformation, reactivation, progressive evolutions of pathway, pressure distribution and water injection rate, to stepwise pressurization were examined during the simulations. The results of the simulations suggest that the developed model can provide a reasonable prediction of the hydro-mechanical behavior related to fault reactivation. The numerical model will be enhanced by continuing collaboration and interaction with other research teams of DECOLVAEX-2019 Task B and validated using the field data from fault activation experiments in a further study.

A Study on Spatial Pattern of Impact Area of Intersection Using Digital Tachograph Data and Traffic Assignment Model (차량 운행기록정보와 통행배정 모형을 이용한 교차로 영향권의 공간적 패턴에 관한 연구)

  • PARK, Seungjun;HONG, Kiman;KIM, Taegyun;SEO, Hyeon;CHO, Joong Rae;HONG, Young Suk
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.2
    • /
    • pp.155-168
    • /
    • 2018
  • In this study, we studied the directional pattern of entering the intersection from the intersection upstream link prior to predicting short future (such as 5 or 10 minutes) intersection direction traffic volume on the interrupted flow, and examined the possibility of traffic volume prediction using traffic assignment model. The analysis method of this study is to investigate the similarity of patterns by performing cluster analysis with the ratio of traffic volume by intersection direction divided by 2 hours using taxi DTG (Digital Tachograph) data (1 week). Also, for linking with the result of the traffic assignment model, this study compares the impact area of 5 minutes or 10 minutes from the center of the intersection with the analysis result of taxi DTG data. To do this, we have developed an algorithm to set the impact area of intersection, using the taxi DTG data and traffic assignment model. As a result of the analysis, the intersection entry pattern of the taxi is grouped into 12, and the Cubic Clustering Criterion indicating the confidence level of clustering is 6.92. As a result of correlation analysis with the impact area of the traffic assignment model, the correlation coefficient for the impact area of 5 minutes was analyzed as 0.86, and significant results were obtained. However, it was analyzed that the correlation coefficient is slightly lowered to 0.69 in the impact area of 10 minutes from the center of the intersection, but this was due to insufficient accuracy of O/D (Origin/Destination) travel and network data. In future, if accuracy of traffic network and accuracy of O/D traffic by time are improved, it is expected that it will be able to utilize traffic volume data calculated from traffic assignment model when controlling traffic signals at intersections.

The Changes of Pulmonary Function and Systemic Blood Pressure in Patients with Obstructive Sleep Apnea Syndrome (폐쇄성 수면 무호흡증후군 환자에서 혈압 및 폐기능의 변화에 관한 연구)

  • Moon, Hwa-Sik;Lee, Sook-Young;Choi, Young-Mee;Kim, Chi-Hong;Kwon, Soon-Seog;Kim, Young-Kyoon;Kim, Kwan-Hyoung;Song, Jeong-Sup;Park, Sung-Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.2
    • /
    • pp.206-217
    • /
    • 1995
  • Background: In patients with obstructive sleep apnea syndrome(OSAS), there are several factors increasing upper airway resistance and there is a predisposition to compromised respiratory function during waking and sleep related to constitutional factors including a tendency to obesity. Several recent studies have suggested a possible relationship between sleep apnea(SA) and systemic hypertension. But the possible pathophysiologic link between SA and hypertension is still unclear. In this study, we have examined the relationship among age, body mass index(BMI), pulmonary function parameters and polysomnographic data in patients with OSAS. And also we tried to know the difference among these parameters between hypertensive OSAS and normotensive OSAS patients. Methods: Patients underwent a full night of polysomnography and measured pulmonary function during waking. OSAS was diagnosed if patients had more than 5 apneas per hour(apnea index, AI). A careful history of previously known or present hypertension was obtained from each patient, and patients with systolic blood pressure $\geq$ 160mmHg and/or diastolic blood pressure $\geq$ 95mmHg were classified as hypertensives. Results: The noctural nadir of arterial oxygen saturation($SaO_2$ nadir) was negatively related to AI and respiratory disturbance index(RDI), and the degree of noctural oxygen desaturation(DOD) was positively related to AI and RDI. BMI contributed to AI, RDI, $SaO_2$ nadir and DOD values. And also BMI contributed to $FEV_1,\;FEV_1/FVC$ and DLco values. There was a correlation between airway resistance(Raw) and AI, and there was a inverse correlation between DLco and DOD. But there was no difference among these parameters between hypertensive OSAS and normotensive OSAS patients. Conclusion: The obesity contributed to the compromised respiratory function and the severity of OSAS. AI and RDI were important factors in the severity of hypoxia during sleep. The measurement of pulmonary function parameters including Raw and DLco may be helpful in the prediction and assessment of OSAS patients. But we could not find clear difference between hypertensive and normotensive OSAS patients.

  • PDF