• 제목/요약/키워드: link-prediction

검색결과 193건 처리시간 0.023초

Link Prediction Algorithm for Signed Social Networks Based on Local and Global Tightness

  • Liu, Miao-Miao;Hu, Qing-Cui;Guo, Jing-Feng;Chen, Jing
    • Journal of Information Processing Systems
    • /
    • 제17권2호
    • /
    • pp.213-226
    • /
    • 2021
  • Given that most of the link prediction algorithms for signed social networks can only complete sign prediction, a novel algorithm is proposed aiming to achieve both link prediction and sign prediction in signed networks. Based on the structural balance theory, the local link tightness and global link tightness are defined respectively by using the structural information of paths with the step size of 2 and 3 between the two nodes. Then the total similarity of the node pair can be obtained by combining them. Its absolute value measures the possibility of the two nodes to establish a link, and its sign is the sign prediction result of the predicted link. The effectiveness and correctness of the proposed algorithm are verified on six typical datasets. Comparison and analysis are also carried out with the classical prediction algorithms in signed networks such as CN-Predict, ICN-Predict, and PSNBS (prediction in signed networks based on balance and similarity) using the evaluation indexes like area under the curve (AUC), Precision, improved AUC', improved Accuracy', and so on. Results show that the proposed algorithm achieves good performance in both link prediction and sign prediction, and its accuracy is higher than other algorithms. Moreover, it can achieve a good balance between prediction accuracy and computational complexity.

Truncated Kernel Projection Machine for Link Prediction

  • Huang, Liang;Li, Ruixuan;Chen, Hong
    • Journal of Computing Science and Engineering
    • /
    • 제10권2호
    • /
    • pp.58-67
    • /
    • 2016
  • With the large amount of complex network data that is increasingly available on the Web, link prediction has become a popular data-mining research field. The focus of this paper is on a link-prediction task that can be formulated as a binary classification problem in complex networks. To solve this link-prediction problem, a sparse-classification algorithm called "Truncated Kernel Projection Machine" that is based on empirical-feature selection is proposed. The proposed algorithm is a novel way to achieve a realization of sparse empirical-feature-based learning that is different from those of the regularized kernel-projection machines. The algorithm is more appealing than those of the previous outstanding learning machines since it can be computed efficiently, and it is also implemented easily and stably during the link-prediction task. The algorithm is applied here for link-prediction tasks in different complex networks, and an investigation of several classification algorithms was performed for comparison. The experimental results show that the proposed algorithm outperformed the compared algorithms in several key indices with a smaller number of test errors and greater stability.

Weighted Local Naive Bayes Link Prediction

  • Wu, JieHua;Zhang, GuoJi;Ren, YaZhou;Zhang, XiaYan;Yang, Qiao
    • Journal of Information Processing Systems
    • /
    • 제13권4호
    • /
    • pp.914-927
    • /
    • 2017
  • Weighted network link prediction is a challenge issue in complex network analysis. Unsupervised methods based on local structure are widely used to handle the predictive task. However, the results are still far from satisfied as major literatures neglect two important points: common neighbors produce different influence on potential links; weighted values associated with links in local structure are also different. In this paper, we adapt an effective link prediction model-local naive Bayes model into a weighted scenario to address this issue. Correspondingly, we propose a weighted local naive Bayes (WLNB) probabilistic link prediction framework. The main contribution here is that a weighted cluster coefficient has been incorporated, allowing our model to inference the weighted contribution in the predicting stage. In addition, WLNB can extensively be applied to several classic similarity metrics. We evaluate WLNB on different kinds of real-world weighted datasets. Experimental results show that our proposed approach performs better (by AUC and Prec) than several alternative methods for link prediction in weighted complex networks.

동작 자세 예측을 위한 2-지체 몸통 모델 (A Two-Segment Trunk Model for Reach Prediction)

  • 정의승;임성현
    • 대한산업공학회지
    • /
    • 제25권3호
    • /
    • pp.393-403
    • /
    • 1999
  • In this research, a reach posture prediction based on a two-segment trunk model was made. Recently, reach posture prediction models have used inverse kinematics to provide a single posture that a person naturally takes, with a single segment trunk model that had some shortcomings. A two-segment trunk model was first developed with two links; pelvis link and lumbar-thoracic link. The former refers to the link from the hip joint to L5/S1 joint while the latter does the link from L5/S1 to the shoulder joint. Second, a reach prediction model was developed using the two-segment trunk model. As a result, more reliable equations for two-segment trunk motion were obtained, and the lean direction which refers to the movement direction of the trunk was not found to have a significant effect on the two-segment trunk motion. The results also showed that the hip joint is more preferred over L5/S1 to serve as a reference point for trunk models and the reach prediction model being developed predicted the real posture accurately.

  • PDF

Link Prediction in Bipartite Network Using Composite Similarities

  • Bijay Gaudel;Deepanjal Shrestha;Niosh Basnet;Neesha Rajkarnikar;Seung Ryul Jeong;Donghai Guan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권8호
    • /
    • pp.2030-2052
    • /
    • 2023
  • Analysis of a bipartite (two-mode) network is a significant research area to understand the formation of social communities, economic systems, drug side effect topology, etc. in complex information systems. Most of the previous works talk about a projection-based model or latent feature model, which predicts the link based on singular similarity. The projection-based models suffer from the loss of structural information in the projected network and the latent feature is hardly present. This work proposes a novel method for link prediction in the bipartite network based on an ensemble of composite similarities, overcoming the issues of model-based and latent feature models. The proposed method analyzes the structure, neighborhood nodes as well as latent attributes between the nodes to predict the link in the network. To illustrate the proposed method, experiments are performed with five real-world data sets and compared with various state-of-art link prediction methods and it is inferred that this method outperforms with ~3% to ~9% higher using area under the precision-recall curve (AUC-PR) measure. This work holds great significance in the study of biological networks, e-commerce networks, complex web-based systems, networks of drug binding, enzyme protein, and other related networks in understanding the formation of such complex networks. Further, this study helps in link prediction and its usability for different purposes ranging from building intelligent systems to providing services in big data and web-based systems.

천리안 위성을 이용한 위성통신 공공 테스트베드 포워드링크 ACM 구축을 위한 예측기법 연구 (A Study on Prediction method for Forward link ACM of Satellite Communication Public Testbed via COMS)

  • 류준규;홍성용
    • 한국위성정보통신학회논문지
    • /
    • 제7권1호
    • /
    • pp.82-85
    • /
    • 2012
  • 본 논문은 천리안 위성을 이용하여 운용중인 공공 테스트베드의 가용율 및 시스템 throughput 향상을 위해 포워드 링크 ACM(Adaptive Coding & Modulation) 방안에 대해 소개하고, 포워드링크에 ACM 기능을 구현하기 위한 채널 상태를 예측하기위한 알고리즘으로 기울기를 이용한 예측 기법과 LMS(Least Mean Square)를 이용한 예측 기법의 성능을 비교하였다. 시뮬레이션 결과 LMS 기법을 이용한 예측기법은 99%가 3dB 이내의 예측 오차를 보였고, 기울기를 이용한 예측 기법은 99%가 4.5dB 이내의 예측 오차를 갖음을 알 수 있다.

A Study on the Performance of Similarity Indices and its Relationship with Link Prediction: a Two-State Random Network Case

  • Ahn, Min-Woo;Jung, Woo-Sung
    • Journal of the Korean Physical Society
    • /
    • 제73권10호
    • /
    • pp.1589-1595
    • /
    • 2018
  • Similarity index measures the topological proximity of node pairs in a complex network. Numerous similarity indices have been defined and investigated, but the dependency of structure on the performance of similarity indices has not been sufficiently investigated. In this study, we investigated the relationship between the performance of similarity indices and structural properties of a network by employing a two-state random network. A node in a two-state network has binary types that are initially given, and a connection probability is determined from the state of the node pair. The performances of similarity indices are affected by the number of links and the ratio of intra-connections to inter-connections. Similarity indices have different characteristics depending on their type. Local indices perform well in small-size networks and do not depend on whether the structure is intra-dominant or inter-dominant. In contrast, global indices perform better in large-size networks, and some such indices do not perform well in an inter-dominant structure. We also found that link prediction performance and the performance of similarity are correlated in both model networks and empirical networks. This relationship implies that link prediction performance can be used as an approximation for the performance of the similarity index when information about node type is unavailable. This relationship may help to find the appropriate index for given networks.

XGBoost를 이용한 교통노드 및 교통링크 기반의 교통사고 예측모델 개발 (Development of Traffic Accident Prediction Model Based on Traffic Node and Link Using XGBoost)

  • 김운식;김영규;고중훈
    • 산업경영시스템학회지
    • /
    • 제45권2호
    • /
    • pp.20-29
    • /
    • 2022
  • This study intends to present a traffic node-based and link-based accident prediction models using XGBoost which is very excellent in performance among machine learning models, and to develop those models with sustainability and scalability. Also, we intend to present those models which predict the number of annual traffic accidents based on road types, weather conditions, and traffic information using XGBoost. To this end, data sets were constructed by collecting and preprocessing traffic accident information, road information, weather information, and traffic information. The SHAP method was used to identify the variables affecting the number of traffic accidents. The five main variables of the traffic node-based accident prediction model were snow cover, precipitation, the number of entering lanes and connected links, and slow speed. Otherwise, those of the traffic link-based accident prediction model were snow cover, precipitation, the number of lanes, road length, and slow speed. As the evaluation results of those models, the RMSE values of those models were each 0.2035 and 0.2107. In this study, only data from Sejong City were used to our models, but ours can be applied to all regions where traffic nodes and links are constructed. Therefore, our prediction models can be extended to a wider range.

연결강도분석접근법에 의한 부도예측용 인공신경망 모형의 입력노드 선정에 관한 연구 (Selection of Input Nodes in Artificial Neural Network for Bankruptcy Prediction by Link Weight Analysis Approach)

  • 이응규;손동우
    • 지능정보연구
    • /
    • 제7권2호
    • /
    • pp.19-33
    • /
    • 2001
  • 본 연구에서는 부도예측용 인공신경망의 입력노드 선정을 위한 휴리스틱으로 연결강도분석접근법을 제안한다. 연결강도분석은 학습이 끝난 인공신경망에서 입력노드와 은닉노드를 연결하는 연결가중치의 절대값 즉, 연결강도를 분석하여 입력변수를 선정하는 접근법으로, 선정기준에 따라 약체연결뉴론제거법과 강체연결뉴론선택법을 들 수 있다. 본 연구에서는 약체연결뉴론제거법, 강체연결뉴론선택법 그리고 이 두 기법을 통합한 통합 연결강도 모형을 제안하여 각각 의사결정트리 및 다변량판별분석에 의해 선정된 입력변수를 이용한 인공신경망 모형과 예측율을 비교한다. 실험 결과 본 연구에서 제안하고 있는 방법론이 의사결정트리나 다변량판별분석 기법보다 높은 예측율을 보여주었다. 특히 두 기법의 통합연결강도 모형의 경우에는 다른 단일 기법보다 높은 예측율을 보이고 있다.

  • PDF

결측 택시 Probe 통행속도 예측기법 개발에 관한 연구 (A Study on the Development of a Technique to Predict Missing Travel Speed Collected by Taxi Probe)

  • 윤병조
    • 대한토목학회논문집
    • /
    • 제31권1D호
    • /
    • pp.43-50
    • /
    • 2011
  • 택시 프로브(Probe)를 이용한 구간통행속도 모니터링체계는 지능형교통체계(ITS)의 핵심적인 하부시스템 중 하나이다. 택시 프로브기법을 통해 수집되는 구간통행속도는 도시가로망의 교통상태 모니터링과 통행시간 정보제공에 널리 활용되고 있다. 그러나 택시 Probe기법은 표본수가 적고 교통혼잡으로 인하여 구간통행시간이 자료수집 주기보다 큰 경우, 실시간으로 자료가 수집되지 않는 누락상태가 발생하게 된다. 이러한 누락상태는 단일시간대에서 다중시간대에 걸쳐 발생하게 되며, 기존의 단일시간대 예측기법으로는 다중시간대의 상태를 예측하지 못하는 단점이 있다. 따라서 다중시간대 누락상태에서 실시간 구간통행속도를 예측하기위한 기법이 요구된다. 본 연구에서는 기존의 단일시간대 예측기법의 한계를 극복하면서 단일 및 다중시간대 통행속도를 예측하기위한 기법을 개발하였다. 개발된 모형은 비모수회귀(NPR)을 기반으로 개발되었으며, 다중시간대 예측에도 불구하고 기존의 단일시간대 예측기법보다 우수한 정확도를 보였다.