• Title/Summary/Keyword: link travel time

Search Result 125, Processing Time 0.037 seconds

A Study on the Development of a Technique to Predict Missing Travel Speed Collected by Taxi Probe (결측 택시 Probe 통행속도 예측기법 개발에 관한 연구)

  • Yoon, Byoung Jo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1D
    • /
    • pp.43-50
    • /
    • 2011
  • The monitoring system for link travel speed using taxi probe is one of key sub-systems of ITS. Link travel speed collected by taxi probe has been widely employed for both monitoring the traffic states of urban road network and providing real-time travel time information. When sample size of taxi probe is small and link travel time is longer than a length of time interval to collect travel speed data, and in turn the missing state is inevitable. Under this missing state, link travel speed data is real-timely not collected. This missing state changes from single to multiple time intervals. Existing single interval prediction techniques can not generate multiple future states. For this reason, it is necessary to replace multiple missing states with the estimations generated by multi-interval prediction method. In this study, a multi-interval prediction method to generate the speed estimations of single and multiple future time step is introduced overcoming the shortcomings of short-term techniques. The model is developed based on Non-Parametric Regression (NPR), and outperformed single-interval prediction methods in terms of prediction accuracy in spite of multi-interval prediction scheme.

A Path Travel Time Estimation Study on Expressways using TCS Link Travel Times (TCS 링크통행시간을 이용한 고속도로 경로통행시간 추정)

  • Lee, Hyeon-Seok;Jeon, Gyeong-Su
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.209-221
    • /
    • 2009
  • Travel time estimation under given traffic conditions is important for providing drivers with travel time prediction information. But the present expressway travel time estimation process cannot calculate a reliable travel time. The objective of this study is to estimate the path travel time spent in a through lane between origin tollgates and destination tollgates on an expressway as a prerequisite result to offer reliable prediction information. Useful and abundant toll collection system (TCS) data were used. When estimating the path travel time, the path travel time is estimated combining the link travel time obtained through a preprocessing process. In the case of a lack of TCS data, the TCS travel time for previous intervals is referenced using the linear interpolation method after analyzing the increase pattern for the travel time. When the TCS data are absent over a long-term period, the dynamic travel time using the VDS time space diagram is estimated. The travel time estimated by the model proposed can be validated statistically when compared to the travel time obtained from vehicles traveling the path directly. The results show that the proposed model can be utilized for estimating a reliable travel time for a long-distance path in which there are a variaty of travel times from the same departure time, the intervals are large and the change in the representative travel time is irregular for a short period.

An Expressway Path Travel Time Estimation Using Hi-pass DSRC Off-Line Travel Data (하이패스 DSRC 자료를 활용한 고속도로 오프라인 경로통행시간 추정기법 개발)

  • Shim, Sangwoo;Choi, Keechoo;Lee, Sangsoo;NamKoong, Seong J.
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.3
    • /
    • pp.45-54
    • /
    • 2013
  • Korea Expressway Corporation has been utilizing vehicles equipped with dedicated short range communication (DSRC) based on-board equipment (OBE) for collecting path travel times. A path based method (PBM) estimates the path travel time using probe vehicles traveling whole links on the path, so it is not always possible to obtain sufficient samples for calculating path travel time in the DSRC system. Having this problem in utilizing DSRC for travel time information, this study attempted to estimate path travel time with the help of a link based method (LBM) and examined whether the LBM can be used for obtaining reliable path travel times. Some comparisons were made and identified that the MAPE difference between the LBM and the PBM estimates are less than 3%, signaling that LBM can be used as a proxy for PBM in case of sparse sample conditions. Some limitations and a future research agenda have also been proposed.

Determining Optimal Aggregation Interval Size for Travel Time Estimation and Forecasting with Statistical Models (통행시간 산정 및 예측을 위한 최적 집계시간간격 결정에 관한 연구)

  • Park, Dong-Joo
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.3
    • /
    • pp.55-76
    • /
    • 2000
  • We propose a general solution methodology for identifying the optimal aggregation interval sizes as a function of the traffic dynamics and frequency of observations for four cases : i) link travel time estimation, ii) corridor/route travel time estimation, iii) link travel time forecasting. and iv) corridor/route travel time forecasting. We first develop statistical models which define Mean Square Error (MSE) for four different cases and interpret the models from a traffic flow perspective. The emphasis is on i) the tradeoff between the Precision and bias, 2) the difference between estimation and forecasting, and 3) the implication of the correlation between links on the corridor/route travel time estimation and forecasting, We then demonstrate the Proposed models to the real-world travel time data from Houston, Texas which were collected as Part of the Automatic Vehicle Identification (AVI) system of the Houston Transtar system. The best aggregation interval sizes for the link travel time estimation and forecasting were different and the function of the traffic dynamics. For the best aggregation interval sizes for the corridor/route travel time estimation and forecasting, the covariance between links had an important effect.

  • PDF

Expressway Travel Time Prediction Using K-Nearest Neighborhood (KNN 알고리즘을 활용한 고속도로 통행시간 예측)

  • Shin, Kangwon;Shim, Sangwoo;Choi, Keechoo;Kim, Soohee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1873-1879
    • /
    • 2014
  • There are various methodologies to forecast the travel time using real-time data but the K-nearest neighborhood (KNN) method in general is regarded as the most one in forecasting when there are enough historical data. The objective of this study is to evaluate applicability of KNN method. In this study, real-time and historical data of toll collection system (TCS) traffic flow and the dedicated short range communication (DSRC) link travel time, and the historical path travel time data are used as input data for KNN approach. The proposed method investigates the path travel time which is the nearest to TCS traffic flow and DSRC link travel time from real-time and historical data, then it calculates the predicted path travel time using weight average method. The results show that accuracy increased when weighted value of DSRC link travel time increases. Moreover the trend of forecasted and real travel times are similar. In addition, the error in forecasted travel time could be further reduced when more historical data could be available in the future database.

A Development of Preprocessing Models of Toll Collection System Data for Travel Time Estimation (통행시간 추정을 위한 TCS 데이터의 전처리 모형 개발)

  • Lee, Hyun-Seok;NamKoong, Seong J.
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.5
    • /
    • pp.1-11
    • /
    • 2009
  • TCS Data imply characteristics of traffic conditions. However, there are outliers in TCS data, which can not represent the travel time of the pertinent section, if these outliers are not eliminated, travel time may be distorted owing to these outliers. Various travel time can be distributed under the same section and time because the variation of the travel time is increase as the section distance is increase, which make difficult to calculate the representative of travel time. Accordingly, it is important to grasp travel time characteristics in order to compute the representative of travel time using TCS Data. In this study, after analyzing the variation ratio of the travel time according to the link distance and the level of congestion, the outlier elimination model and the smoothing model for TCS data were proposed. The results show that the proposed model can be utilized for estimating a reliable travel time for a long-distance path in which there are a variation of travel times from the same departure time, the intervals are large and the change in the representative travel time is irregular for a short period.

  • PDF

Development of Queue Length, Link Travel Time Estimation and Traffic Condition Decision Algorithm using Taxi GPS Data (택시 GPS데이터를 활용한 대기차량길이, 링크통행시간 추정 및 교통상황판단 알고리즘 개발)

  • Hwang, Jae-Seong;Lee, Yong-Ju;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.3
    • /
    • pp.59-72
    • /
    • 2017
  • As the part of study which handles the measure to use the individual vehicle information of taxi GPS data on signal controls in order to overcome the limitation of Loop detector-based collecting methods of real-time signal control system, this paper conducted series of evaluations and improvements on link travel time, queue vehicle time estimates and traffic condition decision algorithm from the research introduced in 2016. considering the control group and the other, the link travel time has enhanced the travel time and the length of queue vehicle has enhanced the estimated model taking account of the traffic situation. It is analyzed that the accuracy of the average link travel time and the length of queue vehicle are respectably both approximately 95 % and 85%. The traffic condition decision algorithm reflected the improved travel speed and vehicle length. Smoothing was performed to determine the trend of the traffic situation and reduce the fluctuation of the data, and the algorithms have refined so as to reflect the pass period on overflow judgment criterion.

A Study of Measuring Traffic Congestion for Urban Network using Average Link Travel Time based on DTG Big Data (DTG 빅데이터 기반의 링크 평균통행시간을 이용한 도심네트워크 혼잡분석 방안 연구)

  • Han, Yohee;Kim, Youngchan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.5
    • /
    • pp.72-84
    • /
    • 2017
  • Together with the Big Data of the 4th Industrial Revolution, the traffic information system has been changed to an section detection system by the point detection system. With DTG(Digital Tachograph) data based on Global Navigation Satellite System, the properties of raw data and data according to processing step were examined. We identified the vehicle trajectory, the link travel time of individual vehicle, and the link average travel time which are generated according to the processing step. In this paper, we proposed a application method for traffic management as characteristics of processing data. We selected the historical data considering the data management status of the center and the availability at the present time. We proposed a method to generate the Travel Time Index with historical link average travel time which can be collected all the time with wide range. We propose a method to monitor the traffic congestion using the Travel Time Index, and analyze the case of intersections when the traffic operation method changed. At the same time, the current situation which makes it difficult to fully utilize DTG data are suggested as limitations.

Development of the Reliability Traffic Assignment Model based on the Travel Time Variation (통행시간변화를 고려하는 신뢰도통행배정모형 개발)

  • 문병섭;이승재;임강원
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.5
    • /
    • pp.69-78
    • /
    • 1999
  • This paper defines the reliable based route choice Principle and formulates the reliability based equilibrium traffic assignment using the Principle. The reliability is defined as the difference of travel demand and capacity using the interference theory of the system engineering. An efficient solution a1gorithm based on Frank-Wo1fe algolithm is Presented to calculate and compare the reliability based traffic assignment with conventional travel time based assignment using small and large scaled road networks. The results show that reliability based traffic assignment converges to equilibrium solution in a reasonable computing time. The equilibrium link flows between reliability and travel time based traffic assignment differ each other in the sense that reliability based assignment is assigned based on the maximum difference of travel demand and link capacity whilst travel time based is assigned on the shortest travel time.

  • PDF

A development of travel time estimation algorithm fusing GPS probe and loop detector (GPS probe 및 루프 검지기 자료의 융합을 통한 통행시간추정 알고리즘 개발)

  • 정연식;최기주
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.3
    • /
    • pp.97-116
    • /
    • 1999
  • The growing demand for the real time traffic information is bringing about the category and number of traffic collection mechanism in the era of ITS. There are, however, two problems in making data into information using various traffic data. First, the information making process of making data into the representative information, for each traffic collection mechanism, for the specified analysis periods is required. Second, the integration process of fusing each representative information into "the information" for each link out of each source is also required. That is, both data reduction and/or data to information process and information fusion are required. This article is focusing on the development of information fusing algorithm based on voting technique, fuzzy regression, and, Bayesian pooling technique for estimating the dynamic link travel time of networks. The proposed algorithm has been validated using the field experiment data out of GPS probes and detectors over the roadways and the estimated link travel time from the algorithm is proved to be more useful than the mere arithmetic mean from each traffic source.

  • PDF