• Title/Summary/Keyword: link interference

Search Result 386, Processing Time 0.037 seconds

Fast Spectrum Sensing in Radar-Interfered Airborne Cognitive Radio Systems (레이다 신호의 간섭 환경에서 항공 인지무선 시스템의 빠른 스펙트럼 센싱)

  • Kim, Soon-Seob;Choi, Young-June
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8C
    • /
    • pp.655-662
    • /
    • 2012
  • In this work, we propose an airborne cognitive radio system that searches a new spectrum band to avoid a communication interruption due to the interference from many radar signals. We develop a method of fast spectrum sensing based on an effective frequency by recognizing the interfering radar as well as geographical information. This effective frequency is calculated by the free-space path loss between a base station and a fighter with the speed parameter. From our analysis, it is verified that the maximum frequency searching time is reduced by half by using our method.

Fabrication and characterization of PbIn-Au-PbIn superconducting junctions

  • Kim, Nam-Hee;Kim, Bum-Kyu;Kim, Hong-Seok;Doh, Yong-Joo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.5-8
    • /
    • 2016
  • We report on the fabrication and measurement results of the electrical transport properties of superconductor-normal metal-superconductor (SNS) weak links, made of PbIn superconductor and Au metal. The maximum supercurrent reaches up to ${\sim}6{\mu}A$ at T = 2.3 K and the supercurrent persists even at T = 4.7 K. Magnetic field dependence of the critical current is consistent with a theoretical fit using the narrow junction model. The superconducting quantum interference device (SQUID) was also fabricated using two PbIn-Au-PbIn junctions connected in parallel. Under perpendicular magnetic field, we clearly observed periodic oscillations of dV/dI with a period of magnetic flux quantum threading into the supercurrent loop of the SQUID. Our fabrication methods would provide an easy and simple way to explore the superconducting proximity effects without ultra-low-temperature cryostats.

Throughput Analysis of Opportunistic Routing in Long-Haul Multi-hop Wireless Networks (롱 홀 다중 홉 무선 네트워크에서의 Opportunistic 라우팅의 전송 용량 분석)

  • Lee, Goo-Yeon;Lee, Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.8
    • /
    • pp.19-24
    • /
    • 2012
  • In this paper, we analyze the maximum throughput of opportunistic routing along a long-haul multi-hop wireless network path for a single data stream, while considering link-level interference among the network nodes. Surprisingly, we find out that opportunistic routing does not provide much improvement in throughput for long-haul paths. The results of this research show that when we compare the extra cost for the complex implementation of the opportunistic routing scheme to the performance improvement obtained from it, opportunistic routing scheme needs to be applied to only short-haul multi-hop wireless network paths.

A 0.25-$\mu\textrm{m}$ CMOS 1.6Gbps/pin 4-Level Transceiver Using Stub Series Terminated Logic Interface for High Bandwidth

  • Kim, Jin-Hyun;Kim, Woo-Seop;Kim, Suki
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.165-168
    • /
    • 2002
  • As the demand for higher data-rate chip-to-chip communication such as memory-to-controller, processor-to-processor increases, low cost high-speed serial links\ulcorner become more attractive. This paper describes a 0.25-fm CMOS 1.6Gbps/pin 4-level transceiver using Stub Series Terminated Logic for high Bandwidth. For multi-gigabit/second application, the data rate is limited by Inter-Symbol Interference (ISI) caused by channel low pass effects, process-limited on-chip clock frequency, and serial link distance. The proposed transceiver uses multi-level signaling (4-level Pulse Amplitude Modulation) using push-pull type, double data rate and flash sampling. To reduce Process-Voltage-Temperature Variation and ISI including data dependency skew, the proposed high-speed calibration circuits with voltage swing controller, data linearity controller and slew rate controller maintains desirable output waveform and makes less sensitive output. In order to detect successfully the transmitted 1.6Gbps/pin 4-level data, the receiver is designed as simultaneous type with a kick - back noise-isolated reference voltage line structure and a 3-stage Gate-Isolated sense amplifier. The transceiver, which was fabricated using a 0.25 fm CMOS process, performs data rate of 1.6 ~ 2.0 Gbps/pin with a 400MHB internal clock, Stub Series Terminated Logic ever in 2.25 ~ 2.75V supply voltage. and occupied 500 * 6001m of area.

  • PDF

A Novel 3-Level Transceiver using Multi Phase Modulation for High Bandwidth

  • Jung, Dae-Hee;Park, Jung-Hwan;Kim, Chan-Kyung;Kim, Chang-Hyun;Kim, Suki
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.791-794
    • /
    • 2003
  • The increasing computational capability of processors is driving the need for high bandwidth links to communicate and store the information that is processed. Such links are often an important part of multi processor interconnection, processor-to-memory interfaces and Serial-network interfaces. This paper describes a 0.11-${\mu}{\textrm}{m}$ CMOS 4 Gbp s/pin 3-Level transceiver using RSL/(Rambus Signaling Logic) for high bandwidth. This system which uses a high-gain windowed integrating receiver with wide common-mode range which was designed in order to improve SNR when operating with the smaller input overdrive of 3-Level. For multi-gigabit/second application, the data rate is limited by Inter-Symbol Interference (ISI) caused by low pass effects of channel, process-limited on-chip clock frequency, and serial link distance. In order to detect the transmited 4Gbps/pin with 3-Level data sucessfully ,the receiver is designed using 3-stage sense amplifier. The proposed transceiver employes multi-level signaling (3-Level Pulse Amplitude Modulation) using clock multi phase, double data rate and Prbs patten generator. The transceiver shows data rate of 3.2 ~ 4.0 Gbps/pin with a 1GHz internal clock.

  • PDF

A High-Speed White-Light Scanning Interferometer for Bump Inspection of Semiconductor Manufacture (반도체 Bump 검사를 위한 백색광 주사 간섭계의 고속화)

  • Ko, Kuk Won;Sim, Jae Hwan;Kim, Min Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.7
    • /
    • pp.702-708
    • /
    • 2013
  • The white-light scanning interferometer (WSI) is an effective optical measurement system for high-precision industries (e.g., flat-panel display and electronics packaging manufacturers) and semiconductor manufacturing industries. Its major disadvantages include a slow image-capturing speed for interferogram acquisition and a high computational cost for peak-detection on the acquired interferogram. Here, a WSI system is proposed for the semiconductor inspection process. The new imaging acquisition technique uses an 'on-the-fly' imaging system. During the vertical scanning motion of the WSI, interference fringe images are sequentially acquired at a series of pre-defined lens positions, without conventional stepwise motions. To reduce the calculation time, a parallel computing method is used to link multiple personal computers (PCs). Experiments were performed to evaluate the proposed high-speed WSI system.

Flicker Prevention Using Byte-Inversion in OOK Modulated Visible Light Data Transmission (OOK변조된 가시광 데이터전송에서 바이트반전을 이용한 플리커 방지)

  • Lee, Junho
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.579-585
    • /
    • 2020
  • In this study, we used byte-inversion transmission method to prevent the flicker of lighting source in a visible light data communication link. In the transmitter, the non-return-to-zero (NRZ) signal with 9.6 kbps was on-off keying (OOK) modulated with a 100 kHz square wave carrier and byte-inversion signal was added after each byte to make the average optical power of the light-emitting diode (LED) constant. In the receiver, we used a band-pass filter to eliminate the interference of the 120 Hz noise which was induced from the adjacent light lamps, and an OOK demodulator to recover the original NRZ signal This scheme is useful in constructing wireless data networks using the illumination of visible light lamps.

Transceiver Design for Terminal Operating with Common Data Link on Ku-Band (Ku 대역 대용량 공용데이터링크용 RF 송수신기 설계)

  • Jeong, Byeoung-Koo;Seo, Jung-Won;Ryu, Ji-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.11
    • /
    • pp.978-984
    • /
    • 2015
  • In this paper, we designed a RF transceiver operating up to 200 km operating range and 45 Mbps data rate. The RF transceiver operates in Ku band and composed of up/down converter, high power amplifier, front-end elements. To satisfy the operating range of RF transceiver, 10W power amplifier was required and realized by using GaN power amplifier. Moreover, to mitigate mutual interference for different bandwidth signals due to the adaptive transmission speed control function, SAW filter bank structure was used. To verify system requirement satisfaction AWR simulation tool was used.

Partial Multipath Routing Scheme to avoid interpath interference in Wireless Multimedia Sensor Networks (무선 멀티미디어 센서 네트워크에서 경로간 간섭회피를 위한 부분 다중경로 라우팅 기법)

  • Lee, Kang-Gun;Park, Hyung-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1917-1924
    • /
    • 2015
  • Efficient routing algorithm is required to transmit data from source to destination by multi-hop transmission in wireless sensor networks. In the multi-hop transmission, multipath routing can be one of the solutions to cope with the traffic congestion and unstable link condition. In this paper, we propose partial multipath routing which does not establish a secondary full routing path but a partial multipath to complement some poor links, and it can enable stable data transmission and reduce the number of nodes in routing path and the required total power compared with conventional multipath routing.

Multi-interface Wireless Mesh Network Testbed using Wireless Distribution System (무선 분산 시스템을 이용한 멀티 인터페이스 무선 메쉬 네트워크 테스트베드)

  • Yoon, Mi-Kyung;Yang, Seung-Chur;Kim, Jong-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1077-1082
    • /
    • 2009
  • Wireless Mesh Network(WMN) is wireless backbone networks technique which has ease of network configuration and cost of advantage. Recently, WNM released a new product, but most of existing research and technology analysis the performance through the simulation. This paper build the wireless mesh network testbed for actual situation. Testbed supports multi-channel multi-interface using bridge, the Wireless Distribution System and dynamic location-based routing protocol. This routing protocol strongly design against wireless interference using metric for link channel change and real distance. Then, the address of mesh clients assigned by the centralized address management server. Mesh clients is designed and implemented to manage network through Simple Network Management Protocol.