• Title/Summary/Keyword: link availability

Search Result 111, Processing Time 0.023 seconds

Security Threats and Attacks in Internet of Things (IOTs)

  • Almtrafi, Sara Mutlaq;Alkhudadi, Bdour Abduallatif;Sami, Gofran;Alhakami, Wajdi
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.107-118
    • /
    • 2021
  • The term Internet of Things (IoTs) refers to the future where things are known daily through the Internet, whether in one way or another, as it is done by the method of collecting various information from various sensors to form a huge network through which people, things and machines are helped to make a link between them at all time and anywhere. The IoTs is everywhere around us such as connected appliances, smart homes security systems and wearable health monitors. However, the question is what if there is a malfunction or outside interference that affects the work of these IoTs based devises? This is the reason of the spread of security causes great concern with the widespread availability of the Internet and Internet devices that are subject to many attacks. Since there aren't many studies that combines requirements, mechanisms, and the attacks of the IoTs, this paper which explores recent published studies between 2017 and 2020 considering different security approaches of protection related to the authentication, integrity, availability and confidentiality Additionally, the paper addresses the different types of attacks in IoTs. We have also addressed the different approaches aim to prevention mechanisms according to several researchers' conclusions and recommendations.

Performance Evaluation of Service-Aware Optical Transport System

  • Youn, Ji-Wook;Yu, Jea-Hoon;Yoo, Tae-Whan
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.241-247
    • /
    • 2010
  • We propose and experimentally demonstrate a service-aware optical transport system. The proposed service-aware optical transport system makes a flow based on service type and priority of traffic. The generated flow is mapped to a corresponding sub-${\lambda}$ for transport over an optical network. Using sub-${\lambda}$ provided by the centralized control plane, we could effectively provide quality-of-service guaranteed Ethernet service and best-effort service simultaneously in a single link. The committed information rate (CIR) traffic and best-effort traffic are assigned to different sub-${\lambda}s$. The bandwidth of the CIR traffic is guaranteed without being affected by violation traffic because the bandwidth is managed per each sub-${\lambda}$. The failure detection time and restoration time from a link failure is measured to be about 60 ${\mu}s$ and 22 ms, respectively, in the ring network. The measured restoration time is much smaller than the 50 ms industry requirement for real-time services. The fast restoration time allows the proposed service-aware optical transport system to offer high availability and reliability which is a requirement for transport networks.

Resilient Packet Transmission (RPT) for the Buffer Based Routing (BBR) Protocol

  • Rathee, Geetanjali;Rakesh, Nitin
    • Journal of Information Processing Systems
    • /
    • v.12 no.1
    • /
    • pp.57-72
    • /
    • 2016
  • To provide effective communication in the wireless mesh network (WMN), several algorithms have been proposed. Since the possibilities of numerous failures always exist during communication, resiliency has been proven to be an important aspect for WMN to recover from these failures. In general, resiliency is the diligence of the reliability and availability in network. Several types of resiliency based routing algorithms have been proposed (i.e., Resilient Multicast, ROMER, etc.). Resilient Multicast establishes a two-node disjoint path and ROMER uses a credit-based approach to provide resiliency in the network. However, these proposed approaches have some disadvantages in terms of network throughput and network congestion. Previously, the buffer based routing (BBR) approach has been proposed to overcome these disadvantages. We proved earlier that BBR is more efficient in regards to w.r.t throughput, network performance, and reliability. In this paper, we consider the node/link failure issues and analogous performance of BBR. For these items we have proposed a resilient packet transmission (RPT) algorithm as a remedy for BBR during these types of failures. We also share the comparative performance analysis of previous approaches as compared to our proposed approach. Network throughput, network congestion, and resiliency against node/link failure are particular performance metrics that are examined over different sized WMNs.

An Exploration on the Use of Medical Simulation in Emergency Medical Technician Education (응급구조사 교육 분야에서 의료 시뮬레이션의 활용 방안 모색)

  • Kim, Jee-Hee
    • Fire Science and Engineering
    • /
    • v.21 no.3
    • /
    • pp.104-112
    • /
    • 2007
  • Simulators were introduced in education as a tool to make advanced training standardized, less expensive, and without danger to those involved. In 1922 in the Unites States, Edward Link presented his homemade flight simulator, which became common place in both military and civilian aviation, known as the "Link Trainer". The development of mannequin simulators used for medical simulation education, training, and research is reviewed, tracing the motivations, evolution to commercial availability, and efforts toward assessment of efficacy of those for teaching cardiopulmonary resuscitation(CPR) for medical personnel and emergency medical technicians(EMT), cardiology skills, anaesthesia clinical skills, and crisis management. This study will provide a brief overview of simulators and trainers in several domains.

A Novel Bio-inspired Trusted Routing Protocol for Mobile Wireless Sensor Networks

  • Zhang, Mingchuan;Xu, Changqiao;Guan, Jianfeng;Zheng, Ruijuan;Wu, Qingtao;Zhang, Hongke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.74-90
    • /
    • 2014
  • Routing in mobile wireless sensor networks (MWSNs) is an extremely challenging issue due to the features of MWSNs. In this paper, we present a novel bio-inspired trusted routing protocol (B-iTRP) based on artificial immune system (AIS), ant colony optimization (ACO) and Physarum optimization (PO). For trust mechanism, B-iTRP monitors neighbors' behavior in real time and then assesses neighbors' trusts based on AIS. For routing strategy, each node proactively finds routes to the Sink based on ACO. When a backward ant is on the way to return source, it senses the energy residual and trust value of each node on the discovered route, and calculates the link trust and link energy of the route. Moreover, B-iTRP also assesses the availability of route based on PO to maintain the route table. Simulation results show how B-iTRP can achieve the effective performance compared to existing state-of-the-art algorithms.

Design and Evaluation of a Fault-tolerant Publish/Subscribe System for IoT Applications (IoT 응용을 위한 결함 포용 발행/구독 시스템의 설계 및 평가)

  • Bae, Ihn-Han
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1101-1113
    • /
    • 2021
  • The rapid growth of sense-and-respond applications and the emerging cloud computing model present a new challenge: providing publish/subscribe middleware as a scalable and elastic cloud service. The publish/subscribe interaction model is a promising solution for scalable data dissemination over wide-area networks. In addition, there have been some work on the publish/subscribe messaging paradigm that guarantees reliability and availability in the face of node and link failures. These publish/subscribe systems are commonly used in information-centric networks and edge-fog-cloud infrastructures for IoT. The IoT has an edge-fog cloud infrastructure to efficiently process massive amounts of sensing data collected from the surrounding environment. In this paper. we propose a quorum-based hierarchical fault-tolerant publish/subscribe systems (QHFPS) to enable reliable delivery of messages in the presence of link and node failures. The QHFPS efficiently distributes IoT messages to the publish/subscribe brokers in fog overlay layers on the basis of proposing extended stepped grid (xS-grid) quorum for providing tolerance when faced with node failures and network partitions. We evaluate the performance of QHFPS in three aspects: number of transmitted Pub/Sub messages, average subscription delay, and subscritpion delivery rate with an analytical model.

DPW-RRM: Random Routing Mutation Defense Method Based on Dynamic Path Weight

  • Hui Jin;Zhaoyang Li;Ruiqin Hu;Jinglei Tan;Hongqi Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3163-3181
    • /
    • 2023
  • Eavesdropping attacks have seriously threatened network security. Attackers could eavesdrop on target nodes and link to steal confidential data. In the traditional network architecture, the static routing path and the important nodes determined by the nature of network topology provide a great convenience for eavesdropping attacks. To resist monitoring attacks, this paper proposes a random routing mutation defense method based on dynamic path weight (DPW-RRM). It utilizes network centrality indicators to determine important nodes in the network topology and reduces the probability of important nodes in path selection, thereby distributing traffic to multiple communication paths, achieving the purpose of increasing the difficulty and cost of eavesdropping attacks. In addition, it dynamically adjusts the weight of the routing path through network state constraints to avoid link congestion and improve the availability of routing mutation. Experimental data shows that DPW-RRM could not only guarantee the normal algorithmic overhead, communication delay, and CPU load of the network, but also effectively resist eavesdropping attacks.

A Fast Multipoint-to-Point LSP Traffic Engineering for Differentiated Service in MPLS Networks (MPLS 망에서 차별화 된 서비스를 제공하기 위한 빠른 Multipoint-to-Point LSP 결정 방식)

  • Kim, Seong-Gwan;Jo, Yeong-Jong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.5
    • /
    • pp.232-242
    • /
    • 2002
  • In a MPLS(Multiprotocol Label Switching) network, it is important to reduce the number of labels and LSP(Lable Switched Path)s for network resource management. MTP(Multipoint-to-Point) LSP can be used to solve this problem. In consideration of traffic engineering, MTP LSP must be chosen to enhance the availability of network and link utilization. Also, a fast mechanism to setup MTP LSPs is required for rerouting capability against link failure. In this paper, we propose a fast MTP LSP traffic engineering of multipath MTP LSP by using a mapping of a MTP LSP upon Diffserv PHBs(Per Hop Behavior) in a Diffserv-capable MPLS network. In the proposed traffic engineering, we determine multiple MTP LSPs in a hierarchical manner according to the characteristics of different services. By using Monte-Carlo method for traffic load balancing process, it provides fast rerouting capability in case of frequent link failure across large network. Out method produces to be nearly optimal within reasonable run-times. It's time complexity is in O( Cn$^2$logn) as conventional multipath routing and it is much faster than Linear Programming approach. Simulation results show that the proposed traffic engineering can be controlled effectively in an administrative manner and enhance the availability of network in comparison with conventional multipath routing.

Gateway Discovery Algorithm Based on Multiple QoS Path Parameters Between Mobile Node and Gateway Node

  • Bouk, Safdar Hussain;Sasase, Iwao;Ahmed, Syed Hassan;Javaid, Nadeem
    • Journal of Communications and Networks
    • /
    • v.14 no.4
    • /
    • pp.434-442
    • /
    • 2012
  • Several gateway selection schemes have been proposed that select gateway nodes based on a single Quality of Service (QoS) path parameter, for instance path availability period, link capacity or end-to-end delay, etc. or on multiple non-QoS parameters, for instance the combination of gateway node speed, residual energy, and number of hops, for Mobile Ad hoc NETworks (MANETs). Each scheme just focuses on the ment of improve only a single network performance, i.e., network throughput, packet delivery ratio, end-to-end delay, or packet drop ratio. However, none of these schemes improves the overall network performance because they focus on a single QoS path parameter or on set of non-QoS parameters. To improve the overall network performance, it is necessary to select a gateway with stable path, a path with themaximum residual load capacity and the minimum latency. In this paper, we propose a gateway selection scheme that considers multiple QoS path parameters such as path availability period, available capacity and latency, to select a potential gateway node. We improve the path availability computation accuracy, we introduce a feedback system to updated path dynamics to the traffic source node and we propose an efficient method to propagate QoS parameters in our scheme. Computer simulations show that our gateway selection scheme improves throughput and packet delivery ratio with less per node energy consumption. It also improves the end-to-end delay compared to single QoS path parameter gateway selection schemes. In addition, we simulate the proposed scheme by considering weighting factors to gateway selection parameters and results show that the weighting factors improve the throughput and end-to-end delay compared to the conventional schemes.

Adaptive Congestion Control Scheme of TCP for Supporting ACM in Satellite PEP System (위성 PEP시스템에서 ACM 지원을 위한 적응형 TCP 혼잡제어기법)

  • Park, ManKyu;Kang, Dongbae;Oh, DeockGil
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Currently satellite communication systems usually use the ACM(Adaptive Coding and Modulation) to extend the link availability and to increase the bandwidth efficiency. However, when ACM system is used for satellite communications, we should carefully consider TCP congestion control to avoid network congestions. Because MODCODs in ACM are changed to make a packet more robust according to satellite wireless link conditions, bandwidth of satellite forward link is also changed. Whereas TCP has a severe problem to control the congestion window for the changed bandwidth, then packet overflow can be experienced at MAC or PHY interface buffers. This is a reason that TCP in transport layer does not recognize a change of bandwidth capability form MAC or PHY layer. To overcome this problem, we propose the adaptive congestion control scheme of TCP for supporting ACM in Satellite PEP (Performance Enhancing Proxy) systems. Simulation results by using ns-2 show that our proposed scheme can be efficiently adapted to the changed bandwidth and TCP congestion window size, and can be useful to improve TCP performance.