• Title/Summary/Keyword: linerboards

Search Result 18, Processing Time 0.022 seconds

Effect of starch properties on the penetration liquids into the surface sized linerboards (표면사이징용 전분의 특성에 따른 라이너지의 액체 침투 특성 변화)

  • Jeong, Young-Bin;Lee, Hak-Lae;Youn, Hye-Jung;Kim, Chae-Hoon;Jeong, Kwang-Ho
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2011.04a
    • /
    • pp.119-119
    • /
    • 2011
  • 표면사이정 기술은 액체의 침투 저항성을 확보하고 표면 특성을 향상시키기 위하여 제지 공정에서 널리 사용되고 있으며, 특히 산업용지의 경우 전분 호액을 사이징액으로 사용하는 표면사이징 기술을 적용하여 표면에 도포된 전분 호액이 지필 내부로 침투하여 인장강도,RCT, SCT, 내부결합강도 등을 향상시키는 효과도 기대하게 된다. 종이는 섬유의 네트워크 구조로 이루어져 있으므로 지필에 대한 액상 물질의 주요 침투 기작은 모세관력에 의한 섬유 간극 내 침투의 형태를 보이며, 침투 정도는 지필의 특성과 전분 호액의 특성에 영향을 받는다. 사이징액이 지필에 침투되는 정도가 높아지면 상대적으로 종이 표면에 남는 전분의 양이 줄어들어 액체의 침투 저항성이나 표면 특성이 최초 기대했던 수준보다 낮아질 가능성이 있다. 사이징액을 구성하는 전분의 특성에 따른 지필 내 침투 정도와 이에 따라 발현되는 효과를 파악하기 위하여 본 연구는 라이너지를 대상으로 하여 표면사이징용 전분의 특성에 따른 침투특성의 변화에 초점을 두고 진행되었다.

  • PDF

The Effects of Blending Starches on the Development of Plybond Strength of Two-ply Linerboard (삼성분 전분혼합에 의한 이겹지의 층간결합강도 개선)

  • Lee, Hak-Lae;Ryu, Jeong-Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.4
    • /
    • pp.14-20
    • /
    • 2007
  • The effects of blending starches with different gelatinization temperatures on the development of ply-bond strength were systematically investigated using a three component mixture design technique. Oxidized corn starches with different gelatinization temperatures were blended with natural corn starch and sprayed for plybonding. Optimum blend ratio for maximizing plybond strength improvement for the starch blends was 40% of natural starch, 27% of oxidized starch with low gelatinization temperature and 33% of oxidized starch with high gelatinization temperature. Starch granules with the lowest gelatinization temperature gelatinizes at the lowest temperature, while the natural corn starch gelatinizes at later stage of drying. The improvement of plybond strength with starch blends were verified on machine trial as well. Plybond strength improvement obtained from the machine trial was lower than that achievable with handsheets, which was attributed to the lower internal bond strength of the linerboards made from recycled fibers.

Evaluation of Antibacterial Property and Freshness Maintenance of Functional Hybrid Corrugated Board Used for Agricultural Products (농산물용 복합 골판지의 항균성 및 선도유지기능 평가)

  • Lee, Ji-Young;Kim, Chul-Hwan;Choi, Jae-Sung;Oh, Seok-Ju;Kim, Byeong-Ho;Lim, Gi-Baek;Kim, Sun-Young;Kim, Jun-Sik
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.3
    • /
    • pp.45-51
    • /
    • 2013
  • We developed a new antibacterial material, a non-woven fabric, a sulfur solution, and a new adhesive system to manufacture a new type of functional hybrid corrugated board in previous studies. Based on experimental data, the prototypes of functional hybrid corrugated boards were manufactured and their physical properties and functionalities, including antibacterial property and the freshness maintenance of sweet persimmon, were measured in this study. The functional hybrid corrugated board could be manufactured in the actual process with linerboards, non-woven fabrics, and other materials without any troubles, and was strong enough to be used as a packaging box for agricultural products. The antibacterial property of the hybrid corrugated board showed a value high enough to eliminate bacteria, which could deteriorate the sweet persimmons. Based on appearance observations, weight loss and firmness measurements, the freshness of sweet persimmons in the functional hybrid corrugated board was maintained better than it was in the conventional corrugated board.

Recycling of Wastepaper(XIV) -The Effect of Amphoteric PAM and Fines on the Dry Strength Properties of Condebelt Press Dried Linerboards- (고지재생연구(제14조) -고온압착건조처리 골판지 원지의 강도에 미치는 양성 PAM과 미세분의 영향-)

  • 최병수;윤혜정;류정용;신종호;송봉근
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.2
    • /
    • pp.24-31
    • /
    • 2001
  • As a novel method to improve strength properties of recycled test liner, Condebelt press drying system was introduced and adopted into Korea. New press drying treatment could enhance the surface and strength properties in accordance with the increase of sheet density. However, Condebelt drying can not increase the density of repeatedly recycled test liner as much as that of virgin UKP and at the same density condition, the strength of Condebelt press dried UKP is greater than that of press dried test liner. In order to increase the strength of test liner, two attempts were tried in this study. First, addition of polyelectrolytes, dry strength agent was investigated with a view to promote the fiber bonding potential of reclaimed corrugated container pulp. Second, blending effect of fines were analyzed in an aims of increasing density and strength of test liner. The results were as follows; Even in the case of test liner densified by Condebelt press dryer, addition of amphoteric PAM as a dry strength agent was effective in increasing strength properties and so the effect of dry strength agent on improving bonding potential of recycled OCC fiber could be confirmed. As an appropriate addition level of amphoteric PAM, below 1% based on dry pulp weight was suggested. Different from virgin UKP, density of recycled test liner can be increased by the blending of OCC fines and strength properties also can be improved. However, excessive blending of OCC fines could result in decreasing of density and serious weakening of test liner. The best blending ration of fines in test liner can be determined as about 30%. Taking into account the fines content in general OCC pulp as 50%, excessive 20% of fines were supposed to be fractionated and removed in order to achieve the best strength of Condebelt press dried test liner.

  • PDF

Evaluation of the Adhesive Strength and the Drying Energy of Corrugated Board Using a Mixed Adhesive (혼합접착제 적용에 따른 골판지의 접착강도와 건조에너지 평가)

  • Lee, Ji Young;Kim, Chul Hwan;Kim, Eun Hea;Park, Tae Ung;Choi, Jae Sung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.3
    • /
    • pp.51-56
    • /
    • 2016
  • The most widely used glue in a corrugator is starch, which is a natural polymer. This material needs thermal energy to achieve a binding force, so a heating section is installed in a corrugator. However, this heating section can cause quality problems in linerboards and corrugating medium and increase the production cost because of the high cost of fossil resources. Therefore, a new adhesive that provides the binding force at lower temperatures than the conventional one must be developed. In this study, SB-latex was selected as a co-adhesive and added to the starch solution. The addition of the SB-latex was determined based on the viscosity of the new adhesive. The adhesive strength and the drying energy reduction of a corrugated board were measured to evaluate the functionalities of the new adhesive. The addition of SB-latex was determined to be under 20% of the oven-dried starch based on the viscosity of the new adhesive. The adhesive strength was improved and the drying energy was reduced by applying the new adhesive.

Study on the Quantitative Analysis Methods of Hexavalent Chromium in Flexography Inks and Organic Pigments - Alkaline digestion and Colorimetric Measurement - (플렉소 잉크 및 유기안료의 6가 크롬 함량 측정 방법에 관한 연구 - 알칼리 분해 및 비색측정법 -)

  • Kim, Jin-Woo;Youn, Hye-Jung;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.4
    • /
    • pp.33-42
    • /
    • 2009
  • This study was performed to evaluate the hexavalent chromium content in flexography inks and organic pigments used as colorants for the ink. The digestion of sample was carried out under alkaline condition, and the content of soluble hexavalent chromium extracted from samples was determined by UV-visible colorimetric analysis method after alkaline digestion. Duplicate sampling system to obtain two digested samples, was applied in this study. To determine the hexavalent chromium content in the flexography ink and organic pigment colorimeteric analysis was employed. Because the organic pigment is the main ingredient of flexography ink it is important to remove the errors associated with the colorant of the ink in colorimetric determination. The duplicate sampling system allowed us to correct the errors associated with the colorimeteric measurement. The additional filtration was found an essential step to exclude colorimeteric error derived from the various precipitates. The soluble hexavalent chromium content in flexography inks was generally less than 5 ppm. Yellow, violet and some magenta colors showed higher soluble hexavalent chromium contents. The content of hexavalent chromium in organic pigments was greater than flexography inks, and yellow, violet and some magenta pigments contained greater amount of hexavalent chromium, which indicated that the hexavalent chromium in inks derives from the colorants. The soluble hexavalent chromium content in linerboards were below 1 ppm, and no hexavalent chromium was detected in UKP. Results suggested that flexography ink is the main factor to cause hexavalent chromium in linerboard and organic pigments.

Chemical Treatment of Short Fiber Fraction of OCC for Retention and Drainage

  • Youn, Hye-Jung;Chin, Seong-Min;Choi, Ik-Sun;Cho, Hui;Seo, Yung-Bum;Sohn, Chang-Man
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.99-103
    • /
    • 2006
  • Use of recycled fibers in papermaking has been increased for economical and environmental reasons. Recycled panels are major liber resources for brown grades and newsprints. Since the recycled fibers have disadvantageous properties as raw materials for papermaking it is of great importance to optimize the use of these recycled fibers. OCC (Old Corrugated Containers) is the major fiber source for linerboards and corrugating mediums that require diverse specification in strength properties. Many studies have been focused to overcome the problems of strength reduction of brown grades when recycled fibers are used as raw materials. The problem of strength loss for papers made from recycled fibers is closely associated with the increased amount of fines in recycled fibers and hornification of fibers. Fines contained in the recycled fiber resources cause problems not only in paper properties but also in process runnability. This shows that the optimal management and proper use of fines in recycling papermaking system are critical to get most benefits of using recycled fibers. In this study some approaches for optimal use of fiber fines in recycled paper mill have been investigated. Stock samples, prepared in the laboratory and obtained from a recycling plant were used. Fractionation of these samples was made using Sweco screen. And the effect of the addition of polyelectrolytes including cationic PAM and PEI on drainage and retention was evaluated. Different methods of polymer addition were compared to find the most effective ways of treating recycled fiber stocks with polyelectrolytes. Addition of polyelectrolytes to the short fiber fraction was most effective in retention and drainage. The influence of the charge and molecular weight of these two polymers has been examined and discussed.

  • PDF

Development of new antibacterial materials for manufacturing functional corrugated board for agricultural products (농산물용 기능성 골판지 제조를 위한 신규 항균재료 개발에 대한 연구)

  • Yoon, Hee-Youl;Oh, Seok-Ju;Lee, Ji-Young;Kim, Byeong-Ho;Lim, Gi-Baek;Choi, Jae-Sung;Kim, Sun-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.3
    • /
    • pp.34-40
    • /
    • 2012
  • In this study, new antibacterial materials were developed to manufacture a functional corrugated board. Sulfur solution, a new antibacterial solution made from inorganic sulfur in the laboratory, and other antibacterial mat erials were adopted to treat the surface of a linerboard. We measured the antibacteriocidal and bacteriostatic activities, as well as the fungal resistance of the surface-treated linerboards, to identify the antibacterial properties. The mechanical properties of the surface-treated linerboard were also determined in order to identify the effects of the antibacterial materials on linerboard properties. Linerboard treated with sulfur solution, PVOH, and sodium metasulfite showed the highest antibacterial activity, while linerboard treated with sulfur solution and nano sulfur showed the highest fungal resistance. It was identified that sulfur solution has effective antibacterial properties. The antibacterial materials did not affect the mechanical properties of the surface-treated linerboard, but the binder showed significant effects in terms of the burst strength, the compressive strength, and the stiffness of the linerboard.