• Title/Summary/Keyword: linearly varying loading

Search Result 19, Processing Time 0.026 seconds

Free Vibrations and Buckling of Rectangular Plates with Linearly Varying In-Plane Loading

  • Chang, Kyong-Ho;Shim, Hyun-Ju;Kang, Jae-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.4 s.14
    • /
    • pp.99-111
    • /
    • 2004
  • An exact solution procedure is formulated for the free vibration and buckling analysis of rectangular plates having two opposite edges simply supported when these edges are subjected to linearly varying normal stresses. The other two edges may be clamped, simply supported or free, or they may be elastically supported. The transverse displacement (w) is assumed as sinusoidal in the direction of loading (x), and a power series is assumed in the lateral (y) direction (i.e., the method of Frobenius). Applying the boundary conditions yields the eigenvalue problem of finding the roots of a fourth order characteristic determinant. Care must be exercised to obtain adequate convergence for accurate vibration frequencies and buckling loads, as is demonstrated by two convergence tables. Some interesting and useful results for vibration frequencies and buckling loads, and their mode shapes, are presented for a variety of edge conditions and in-plane loadings, especially pure in-plane moments.

  • PDF

Using FEM and artificial networks to predict on elastic buckling load of perforated rectangular plates under linearly varying in-plane normal load

  • Sonmez, Mustafa;Aydin Komur, M.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.2
    • /
    • pp.159-174
    • /
    • 2010
  • Elastic buckling load of perforated steel plates is typically predicted using the finite element or conjugate load/displacement methods. In this paper an artificial neural network (ANN)-based formula is presented for the prediction of the elastic buckling load of rectangular plates having a circular cutout. By using this formula, the elastic buckling load of perforated plates can be calculated easily without setting up an ANN platform. In this study, the center of a circular cutout was chosen at different locations along the longitudinal x-axis of plates subjected to linearly varying loading. The results of the finite element method (FEM) produced by the commercial software package ANSYS are used to train and test the network. The accuracy of the proposed formula based on the trained ANN model is evaluated by comparing with the results of different researchers. The results show that the presented ANN-based formula is practical in predicting the elastic buckling load of perforated plates without the need of an ANN platform.

Parametric resonance of composite skew plate under non-uniform in-plane loading

  • Kumar, Rajesh;Kumar, Abhinav;Panda, Sarat Kumar
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.435-459
    • /
    • 2015
  • Parametric resonance of shear deformable composite skew plates subjected to non-uniform (parabolic) and linearly varying periodic edge loading is studied for different boundary conditions. The skew plate structural model is based on higher order shear deformation theory (HSDT), which accurately predicts the numerical results for thick skew plate. The total energy functional is derived for the skew plates from total potential energy and kinetic energy of the plate. The strain energy which is the part of total potential energy contains membrane energy, bending energy, additional bending energy due to additional change in curvature and shear energy due to shear deformation, respectively. The total energy functional is solved using Rayleigh-Ritz method in conjunction with boundary characteristics orthonormal polynomials (BCOPs) functions. The orthonormal polynomials are generated for unit square domain using Gram-Schmidt orthogonalization process. Bolotin method is followed to obtain the boundaries of parametric resonance region with higher order approximation. These boundaries are traced by the periodic solution of Mathieu-Hill equations with period T and 2T. Effect of various parameters like skew angle, span-to-thickness ratio, aspect ratio, boundary conditions, static load factor on parametric resonance of skew plate have been investigated. The investigation also includes influence of different types of linearly varying loading and parabolically varying bi-axial loading.

Thermal buckling of FGM nanoplates subjected to linear and nonlinear varying loads on Pasternak foundation

  • Ebrahimi, Farzad;Ehyaei, Javad;Babaei, Ramin
    • Advances in materials Research
    • /
    • v.5 no.4
    • /
    • pp.245-261
    • /
    • 2016
  • Thermo-mechanical buckling problem of functionally graded (FG) nanoplates supported by Pasternak elastic foundation subjected to linearly/non-linearly varying loadings is analyzed via the nonlocal elasticity theory. Two opposite edges of the nanoplate are subjected to the linear and nonlinear varying normal stresses. Elastic properties of nanoplate change in spatial coordinate based on a power-law form. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanoplate. The equations of motion for an embedded FG nanoplate are derived by using Hamilton principle and Eringen's nonlocal elasticity theory. Navier's method is presented to explore the influences of elastic foundation parameters, various thermal environments, small scale parameter, material composition and the plate geometrical parameters on buckling characteristics of the FG nanoplate. According to the numerical results, it is revealed that the proposed modeling can provide accurate results of the FG nanoplates as compared some cases in the literature. Numerical examples show that the buckling characteristics of the FG nanoplate are related to the material composition, temperature distribution, elastic foundation parameters, nonlocality effects and the different loading conditions.

Contact buckling behaviour of corrugated plates subjected to linearly varying in-plane loads

  • Dong, Jianghui;Ma, Xing;Zhuge, Yan;Mills, Julie E.
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.333-348
    • /
    • 2018
  • An analytical method is developed for analysing the contact buckling response of infinitely long, thin corrugated plates and flat plates restrained by a Winkler tensionless foundation and subjected to linearly varying in-plane loadings, where the corrugated plates are modelled as orthotropic plates and the flat plates are modelled as isotropic plates. The critical step in the presented method is the explicit expression for the lateral buckling mode function, which is derived through using the energy method. Simply supported and clamped edges conditions on the unloaded edges are considered in this study. The acquired lateral deflection function is applied to the governing buckling equations to eliminate the lateral variable. Considering the boundary conditions and continuity conditions at the border line between the contact and non-contact zones, the buckling coefficients and the corresponding buckling modes are found. The analytical solution to the buckling coefficients is also expressed through a fitted approximate formula in terms of foundation stiffness, which is verified through previous studies and finite element (FE) method.

Exact deformation of an infinite rectangular plate with an arbitrarily located circular hole under in-plane loadings

  • Yang, Yeong-Bin;Kang, Jae-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.783-797
    • /
    • 2016
  • Exact solutions for stresses, strains, and displacements of a perforated rectangular plate by an arbitrarily located circular hole subjected to both linearly varying in-plane normal stresses on the two opposite edges and in-plane shear stresses are investigated using the Airy stress function. The hoop stress occurring at the edge of the non-central circular hole are computed and plotted. Stress concentration factors (the maximum non-dimensional hoop stresses) depending on the location and size of the non-central circular hole and the loading condition are tabularized.

A Study on the Controlled Release of Naproxen from Hydrophilic Polymer Matrix (친수성고분자 매트릭스의 Naproxen 제어방출에 관한 연구)

  • 김종국;조은실
    • YAKHAK HOEJI
    • /
    • v.31 no.1
    • /
    • pp.25-32
    • /
    • 1987
  • The effect of loading dose, plasticiser and PVA molecular weight on naproxen release from hydrophilic polymer matrix was examined. Hydrophilic polymer matrix was prepared with PVA and PVP by adding glycerine as plasticiser. The release of naproxen from polymer matrix was determined in phosphate buffer medium. The release rate of naproxen from the polymer matrix increased as drug loading dose and plasticiser percentage increased. Raproxen released from the polymer matrix showed the time square root kinetics. Without changing the release-pattern, the release rate of naproxen could not be changed by varying molecular weight of PVA. Linearly released time range increased as drug loading dose increased, whereas decreased as plasticiser percentage increased up to 30%.

  • PDF

Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermo-mechanical loading using nonlocal strain gradient theory

  • Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.683-693
    • /
    • 2017
  • According to a generalized nonlocal strain gradient theory (NSGT), dynamic modeling and free vibrational analysis of nanoporous inhomogeneous nanoplates is presented. The present model incorporates two scale coefficients to examine vibration behavior of nanoplates much accurately. Porosity-dependent material properties of the nanoplate are defined via a modified power-law function. The nanoplate is resting on a viscoelastic substrate and is subjected to hygro-thermal environment and in-plane linearly varying mechanical loads. The governing equations and related classical and non-classical boundary conditions are derived based on Hamilton's principle. These equations are solved for hinged nanoplates via Galerkin's method. Obtained results show the importance of hygro-thermal loading, viscoelastic medium, in-plane bending load, gradient index, nonlocal parameter, strain gradient parameter and porosities on vibrational characteristics of size-dependent FG nanoplates.

Instability and vibration analyses of FG cylindrical panels under parabolic axial compressions

  • Kumar, Rajesh;Dey, Tanish;Panda, Sarat K.
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.187-199
    • /
    • 2019
  • This paper presents the semi-analytical development of the dynamic instability behavior and the dynamic response of functionally graded (FG) cylindrical shallow shell panel subjected to different type of periodic axial compression. First, in prebuckling analysis, the stresses distribution within the panels are determined for respective loading type and these stresses are used to study the dynamic instability behavior and the dynamic response. The prebuckling stresses within the shell panel are the same as applied in-plane edge loading for the case of uniform and linearly varying loadings. However, this is not true for the case of parabolic loadings. The parabolic edge loading produces all the stresses (${\sigma}_{xx}$, ${\sigma}_{yy}$ and ${\tau}_{xy}$) within the FG cylindrical panel. These stresses are evaluated by minimizing the membrane energy via Ritz method. Using these stresses the partial differential equations of FG cylindrical panel are formulated by applying Hamilton's principal assuming higher order shear deformation theory (HSDT) and von-$K{\acute{a}}rm{\acute{a}}n$ non-linearity. The non-linear governing partial differential equations are converted into a set of Mathieu-Hill equations via Galerkin's method. Bolotin method is adopted to trace the boundaries of instability regions. The linear and non-linear dynamic responses in stable and unstable region are plotted to know the characteristics of instability regions of FG cylindrical panel. Moreover, the non-linear frequency-amplitude responses are obtained using Incremental Harmonic Balance (IHB) method.