• Title/Summary/Keyword: linearly combining method

Search Result 11, Processing Time 0.02 seconds

The MSDD Diversity Receiver Algorithm for a High Speed Burst Modem (고속 버스트 모뎀을 위한 MSDD Diversity 수신 알고리즘)

  • 김재형;이영철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.281-288
    • /
    • 2004
  • In this paper, we consider the diversity combining method for multiple symbol differential detection (MSDD) over the slow fading diversity channel. Though the performance of the optimum maximum-likelihood sequence estimator for MSDD approaches the performance of maximal-ratio combining with differential encoding, the complexity increases exponentially as the size of MSDD block is increased. This new pre-combining method can make use of the efficient MSDD algorithm that has a complexity increasing linearly with the block length or MSDD. Thus, in many wireless scenarios where it is not possible to perform coherent detection. this pre-combined diversity MSDD can be applied to obtain substantial gain compare to conventional differential detection.

An Multiple Access Interference Mitigation Technique Using Linearly Constrained Constant Modulus Algorithm in MC-CDMA Systems (Linearly Constrained Constant Modulus Algorithm을 이용한 MC-CDMA 시스템에서의 MAI 완화 기법)

  • Kim, Dong-Joo;Kim Joo-Eung;Jung Sung-Soon;Hong Dae-Sik;Kang Chang-Eon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.1A
    • /
    • pp.73-79
    • /
    • 2002
  • In this paper, two interference suppression schemes (LCCMA, HIC) applied to the MC-CDMA system were proposed. The proposed schemes have advantages that it don't requires the other's spreading code and can be used even in mobile. The proposed HIC combines the proposed interference suppressor with PIC. Simulation is performed in various environments using the Monte Carlo method. Simulation results show that there is 1.4~3 times capacity increase in corresponding simulation environments. Also this scheme can take advantage of path diversity whereas the system using EGC, MRC, and PIC cannot. Therefore, as the number of path increase, a considerable performance improvement can be attained.

Dispersion-Managed Links for WDM Transmission Arranged by Linearly or Nonlinearly Incremented Residual Dispersion per Span

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.4
    • /
    • pp.205-211
    • /
    • 2017
  • Combining dispersion-managed optical links with midway optical phase conjugation (OPC) is a possible method of compensating for optical signal distortion due to group velocity dispersion and nonlinear Kerr effects. Although an improvement in the performance of these optical links has been reported, the fixed residual dispersion per span (RDPS) that is typically used restricts the flexibility of link configurations. Thus, in this paper, a flexible dispersion-managed link configuration, comprising artificial distributions of linearly/nonlinearly incremented RDPS, is proposed. Simulations show that a descending distribution of RDPS before the midway OPC, and an ascending distribution of RDPS after the midway OPC, gives the best artificial distribution pattern as the number of fiber spans is increased, regardless of the RDPS incrementation method.

Adaptive Blind Equalization Controlled by Linearly Combining CME and Non-CME Errors (CME 오차와 non-CME 오차의 선형 결합에 의해 제어되는 적응 블라인드 등화)

  • Oh, Kil Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.3-8
    • /
    • 2015
  • In this paper, we propose a blind equalization algorithm based on the error signal linearly combined a constellation-matched error (CME) and a non-constellation-matched error (non-CME). The new error signal was designed to include the non-CME term for reaching initial convergence and the CME term for improving intersymbol interference (ISI) performance of output signals, and it controls the error terms through a combining factor. By controlling the error terms, it generates an appropriate error signal for equalization process and improves convergence speed and ISI cancellation performance compared to those of conventional algorithms. In the simulation for 64-QAM and 256-QAM signals under the multipath channel and additive noise conditions, the proposed method was superior to CMA and CMA+DD concurrent equalization.

Content-Based Image Retrieval using RBF Neural Network (RBF 신경망을 이용한 내용 기반 영상 검색)

  • Lee, Hyoung-K;Yoo, Suk-I
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.3
    • /
    • pp.145-155
    • /
    • 2002
  • In content-based image retrieval (CBIR), most conventional approaches assume a linear relationship between different features and require users themselves to assign the appropriate weights to each feature. However, the linear relationship assumed between the features is too restricted to accurately represent high-level concepts and the intricacies of human perception. In this paper, a neural network-based image retrieval (NNIR) model is proposed. It has been developed based on a human-computer interaction approach to CBIR using a radial basis function network (RBFN). By using the RBFN, this approach determines the nonlinear relationship between features and it allows the user to select an initial query image and search incrementally the target images via relevance feedback so that more accurate similarity comparison between images can be supported. The experiment was performed to calculate the level of recall and precision based on a database that contains 1,015 images and consists of 145 classes. The experimental results showed that the recall and level of the proposed approach were 93.45% and 80.61% respectively, which is superior than precision the existing approaches such as the linearly combining approach, the rank-based method, and the backpropagation algorithm-based method.

Development of Crack Examination Algorithm Using the Linearly Integrated Hall Sensor Array (선형 홀 센서 배열을 사용한 결함 검사 알고리즘 개발)

  • Kim, Jae-Jun;Kim, Byoung-Soo;Lee, Jin-Yi;Lee, Soon-Geul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.11
    • /
    • pp.30-36
    • /
    • 2010
  • Previous researches show that linearly integrated Hall sensor arrays (LIHaS) can detect cracks in the steel structure fast and effectively This paper proposes an algorithm that estimates the size and shape of cracks for the developed LIHaS. In most nondestructive testing (NDT), just crack existence and location are obtained by processing 1-dimensional data from the sensor that scans the object with relative speed in single direction. The proposed method is composed with two steps. The first step is constructing 2-dimensionally mapped data space by combining the converted position data from the time-based scan data with the position information of sensor arrays those are placed in the vertical direction to the scan direction. The second step is applying designed Laplacian filter and smoothing filter to estimate the size and shape of cracks. The experimental results of express train wheels show that the proposed algorithm is not only more reliable and accurate to detecting cracks but also effective to estimate the size and shape of cracks.

Identification and control of dynamical system including nonlinearities (비선형성이 존재하는 동적 시스템의 식별과 제어)

  • 김규남;조규상;양태진;김경기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.236-242
    • /
    • 1992
  • Multi-layered neural networks are applied to the identification and control of nonlinear dynamical system. Traditional adaptive control techniques can only deal with linear systems or some special nonlinear systems. A scheme for combining multi-layered neural networks with model reference network techniques has the capability to learn the nonlinearity and shows the great potential for adaptive control. In many interesting cases the system can be described by a nonlinear model in which the control input appears linearly. In this paper the identification of linear and nonlinear part are performed simultaneously. The projection algorithm and the new estimation method which uses the delta rule of neural network are compared throughout the simulation. The simulation results show that the identification and adaptive control schemes suggested are practically feasible and effective.

  • PDF

The Fabrication of Al-Cu Alloy Nano Powders by a New Method Combining Electrodeposition and Electrical Wire Explosion (전기도금법과 전기선폭발법을 이용한 Al-Cu 합금 나노분말제조)

  • Park Je-Shin;Suh Chang-Youl;Chang Han-Kwon;Lee Jae-Chun;Kim Won-Baek
    • Journal of Powder Materials
    • /
    • v.13 no.3 s.56
    • /
    • pp.187-191
    • /
    • 2006
  • Al-Cu alloy nano powders were produced by the electrical explosion of Cu-plated Al wires. The composition and phase of the alloy could be controlled by varying the thickness of Cu deposit on Al wire. When the Cu layer was thin, Al solid solution and $CuAl_2$ were the major phases. As the Cu layer becomes thicker, Al diminished while $Al_4Cu_9$ phase prevailed instead. The average particle size of Al-Cu nano powders became slightly smaller from 63 nm to 44 nm as Cu layer becomes thicker. The oxygen content of Al-Cu powder decreased linearly with Cu content. It is well demonstrated that the electrodeposition combined with wire explosion could be simple and economical means to prepare variety of alloy and intermetallic nano powders.

Effect of lateral differential settlement of high-speed railway subgrade on dynamic response of vehicle-track coupling systems

  • Zhang, Keping;Zhang, Xiaohui;Zhou, Shunhua
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.491-501
    • /
    • 2021
  • A difference in subgrade settlement between two rails of a track manifests as lateral differential subgrade settlement. This settlement causes unsteadiness in the motion of trains passing through the corresponding area. To illustrate the effect of lateral differential subgrade settlement on the dynamic response of a vehicle-track coupling system, a three-dimensional vehicle-track-subgrade coupling model was formulated by combining the vehicle-track dynamics theory and the finite element method. The wheel/rail force, car body acceleration, and derailment factor are chosen as evaluation indices of the system dynamic response. The effects of the amplitude and wavelength of lateral differential subgrade settlement as well as the driving speed of the vehicle are analyzed. The study reveals the following: The dynamic responses of the vehicle-track system generally increase linearly with the driving speed when the train passes through a lateral subgrade settlement area. The wheel/rail force acting on a rail with a large settlement exceeds that on a rail with a small settlement. The dynamic responses of the vehicle-track system increase with the amplitude of the lateral differential subgrade settlement. For a 250-km/h train speed, the proposed maximum amplitude for a lateral differential settlement with a wavelength of 20 m is 10 mm. The dynamic responses of the vehicle-track system decrease with an increase in the wavelength of the lateral differential subgrade settlement. To achieve a good operation quality of a train at a 250-km/h driving speed, the wavelength of a lateral differential subgrade settlement with an amplitude of 20 mm should not be less than 15 m. Monitoring lateral differential settlements should be given more emphasis in routine high-speed railway maintenance and repairs.

Acquirement of True Stress-strain Curve Using True Fracture Strain Obtained by Tensile Test and FE Analysis (인장시험과 유한요소해석으로 구한 파단 진변형률을 이용한 진응력-진변형률 선도 획득)

  • Lee, Kyoung-Yoon;Kim, Tae-Hyung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1054-1064
    • /
    • 2009
  • In this work, we predict a true fracture strain using load-displacement curves from tensile test and finite element analysis (FEA), and suggest a method for acquiring true stress-strain (SS) curves by predicted fracture strain. We first derived the true SS curve up to necking point from load-displacement curve. As the beginning, the posterior necking part of true SS curve is linearly extrapolated with the slope at necking point. The whole SS curve is then adopted for FE simulation of tensile test. The Bridgman factor or suitable plate correction factors are applied to pre and post FEA. In the load-true strain curve from FEA, the true fracture strain is determined as the matching point to test fracture load. The determined true strain is validated by comparing with test fracture strain. Finally, we complete the true SS curve by combining the prior necking part and linear part, the latter of which connects necking and predicted fracture points.