• 제목/요약/키워드: linearized operator $L_k$

검색결과 2건 처리시간 0.018초

OSCILLATIONS FOR EVEN-ORDER NEUTRAL DIFFERENCE EQUATIONS

  • Zhou, Zhan;Yu, Jianshe;Lei, Guanglong
    • Journal of applied mathematics & informatics
    • /
    • 제7권3호
    • /
    • pp.833-842
    • /
    • 2000
  • Consider the even-order neutral difference equation (*) ${\delta}^m(x_n{-}p_ng(x_{n-k}))-q_nh(x_{n-1})=0$, n=0,1,2,... where $\Delta$ is the forward difference operator, m is even, ${-p_n},{q_n}$ are sequences of nonnegative real numbers, k, l are nonnegative integers, g(x), h(x) ${\in}$ C(R, R) with xg(x) > 0 for $x\;{\neq}\;0$. In this paper, we obtain some linearized oscillation theorems of (*) for $p_n\;{\in}\;(-{\infty},0)$ which are discrete results of the open problem by Gyori and Ladas.

HYPERSURFACES IN 𝕊4 THAT ARE OF Lk-2-TYPE

  • Lucas, Pascual;Ramirez-Ospina, Hector-Fabian
    • 대한수학회보
    • /
    • 제53권3호
    • /
    • pp.885-902
    • /
    • 2016
  • In this paper we begin the study of $L_k$-2-type hypersurfaces of a hypersphere ${\mathbb{S}}^{n+1}{\subset}{\mathbb{R}}^{n+2}$ for $k{\geq}1$ Let ${\psi}:M^3{\rightarrow}{\mathbb{S}}^4$ be an orientable $H_k$-hypersurface, which is not an open portion of a hypersphere. Then $M^3$ is of $L_k$-2-type if and only if $M^3$ is a Clifford tori ${\mathbb{S}}^1(r_1){\times}{\mathbb{S}}^2(r_2)$, $r^2_1+r^2_2=1$, for appropriate radii, or a tube $T^r(V^2)$ of appropriate constant radius r around the Veronese embedding of the real projective plane ${\mathbb{R}}P^2({\sqrt{3}})$.