• 제목/요약/키워드: linearization

검색결과 965건 처리시간 0.027초

시그마 포인트를 이용한 채널 등화용 순환신경망 훈련 알고리즘 (Training Algorithm of Recurrent Neural Network Using a Sigma Point for Equalization of Channels)

  • 권오신
    • 한국정보통신학회논문지
    • /
    • 제11권4호
    • /
    • pp.826-832
    • /
    • 2007
  • 고속 통신 시스템의 채널 등화에 순환 신경망이 자주 이용되고 있다. 기존의 등화방법은 대부분 시불변 채널을 주로 다루었다. 그러나 이동통신과 같은 현대의 통신환경은 페이딩으로 인하여 시변특성을 갖는다. 본 논문에서는 비선형 시변 시스템에 적용하여 성능이 우수한 결정 피드백 순환신경망을 채널등화기로 이용하며, 또한 채널 등화에 빠른 수렴속도와 우수한 추적성능을 지니는 확장된 칼만필터와 시그마 포인트 칼만필터를 이용한 두 종류의 훈련 알고리즘을 제안한다. 확장된 칼만필터를 이용한 경우 비선형 시스템의 1차 선형화 과정에서 커다란 오차를 유발할 수도 있으며, 이에 대한 대안으로 시그마 포인트 칼만필터를 이용하여 이러한 문제점을 극복할 수 있다.

비선형 차량능동현가시스템의 주파수 감응감쇠 특성연구 (Frequency Dependent Damping for a Nonlinear Vehicle Active Suspension System)

  • 김주용
    • 한국기계기술학회지
    • /
    • 제13권2호
    • /
    • pp.45-54
    • /
    • 2011
  • A vehicle suspension system performs two functions, the ride quality and the stability, which conflict with each other. Among the various suspension systems, an active suspension system has an external energy source, from which energy is always supplied to the system for continuous control of vehicle motion. In the process of the linearization for the nonlinear active suspension system, the frequency dependent damping method is used for the exact modelling to the real model. The pressure control valve which is controlled by proportional solenoid is the most important component in the active suspension system. The pressure control valve has the dynamic characteristics with 1st order delay. Therefore, It's necessary to adopt the lead compensator to compensate the dynamics of the pressure control valve. The sampling time is also important factor for the control performances. The sampling time value is proposed to satisfy the system performances. After the modelling and simulation for the pressure control valve and vehicle dynamic, the performances of the vehicle ride quality and the stability are enhanced.

Large deflection analysis of laminated composite plates using layerwise displacement model

  • Cetkovic, M.;Vuksanovic, Dj.
    • Structural Engineering and Mechanics
    • /
    • 제40권2호
    • /
    • pp.257-277
    • /
    • 2011
  • In this paper the geometrically nonlinear continuum plate finite element model, hitherto not reported in the literature, is developed using the total Lagrange formulation. With the layerwise displacement field of Reddy, nonlinear Green-Lagrange small strain large displacements relations (in the von Karman sense) and linear elastic orthotropic material properties for each lamina, the 3D elasticity equations are reduced to 2D problem and the nonlinear equilibrium integral form is obtained. By performing the linearization on nonlinear integral form and then the discretization on linearized integral form, tangent stiffness matrix is obtained with less manipulation and in more consistent form, compared to the one obtained using laminated element approach. Symmetric tangent stiffness matrixes, together with internal force vector are then utilized in Newton Raphson's method for the numerical solution of nonlinear incremental finite element equilibrium equations. Despite of its complex layer dependent numerical nature, the present model has no shear locking problems, compared to ESL (Equivalent Single Layer) models, or aspect ratio problems, as the 3D finite element may have when analyzing thin plate behavior. The originally coded MATLAB computer program for the finite element solution is used to verify the accuracy of the numerical model, by calculating nonlinear response of plates with different mechanical properties, which are isotropic, orthotropic and anisotropic (cross ply and angle ply), different plate thickness, different boundary conditions and different load direction (unloading/loading). The obtained results are compared with available results from the literature and the linear solutions from the author's previous papers.

인수분해 음해법에 의한 3차원 Navier-Stokes 방정식의 계산 (Calculation of 3-D Navier-Stokes Equations by an IAF Method)

  • 곽승현
    • 대한조선학회논문집
    • /
    • 제31권1호
    • /
    • pp.63-70
    • /
    • 1994
  • 항공유체의 계산에 주로 사용되는 음해법의 하나인 IAF(Implicit Approximate Factorization)법을 이용해 3차원 Wigley 선형 주위의 자유표면파 및 점성유동장을 해석하였다. IAF 법을 사용함으로서 기존 Euler 양해법의 계산 시간을 50% 이상 감소시키는데 성공하였다. 수치기법으로 국부선형화와 Euler 음해법을 사용하였으며 artificial viscosity의 생성을 위한 압력 구배항은 사용하지 않았다. 수치 계산은 Reynolds 수 $10^6$. Froude 수 0.25, 0.289 및 0.316에 대하여 수행하였고 난류 모형으로는 Baldwin-Lomax 모형을 사용하였으며 주요 계산 결과로는 자유표면화 형상 및 속도분포 등이었다. 본 연구에서는 그 중에서 자유표면파 형상에 대한 계산 결과를 실험값 및 Euler 양해법을 사용한 결과와 각각 비교 검토하였다.

  • PDF

High Speed SD-OCT System Using GPU Accelerated Mode for in vivo Human Eye Imaging

  • Cho, Nam Hyun;Jung, Unsang;Kim, Suhwan;Jung, Woonggyu;Oh, Junghwan;Kang, Hyun Wook;Kim, Jeehyun
    • Journal of the Optical Society of Korea
    • /
    • 제17권1호
    • /
    • pp.68-72
    • /
    • 2013
  • We developed an SD-OCT (Spectral Domain-Optical Coherence Tomography) system which uses a GPU (Graphics Processing Unit) for processing. The image size from the SD-OCT system is $1024{\times}512$ and the speed is 110 frame/sec in real-time. K-domain linearization, FFT (Fast Fourier Transform), and log scaling were included in the GPU processing. The signal processing speed was about 62 ms using a CPU (Central Processing Unit) and 1.6 ms using a GPU, which is 39 times faster. We performed an in-vivo retinal scan, and reconstructed a 3D visualization based on C-scan images. As a result, there were minimal motion artifacts and we confirmed that tomograms of blood vessels, the optic nerve, and the optic disk are clearly identified. According to the results of this study, this SD-OCT can be applied to real-time 3D display technology, particularly auxiliary instruments for eye operations in ophthalmology.

Modeling and Design of Zero-Voltage-Switching Controller for Wireless Power Transfer Systems Based on Closed-Loop Dominant Pole

  • Chen, Cheng;Zhou, Hong;Deng, Qijun;Hu, Wenshan;Yu, Yanjuan;Lu, Xiaoqing;Lai, Jingang
    • Journal of Power Electronics
    • /
    • 제19권5호
    • /
    • pp.1235-1247
    • /
    • 2019
  • Zero-Voltage-Switching (ZVS) operation for a Wireless Power Transfer (WPT) system can be achieved by designing a ZVS controller. However, the performance of the controller in some industrial applications needs to be designed tightly. This paper introduces a ZVS controller design method for WPT systems. The parameters of the controller are designed according to the desired performance based on the closed loop dominant pole placement method. To describe the dynamic characteristics of the system ZVS angle, a nonlinear dynamic model is deduced and linearized using the small signal linearization method. By analyzing the zero-pole distribution, a low-order equivalent model that facilitates the controller design is obtained. The parameters of the controller are designed by calculating the time constant of the closed-loop dominant poles. A prototype of a WPT system with the designed controller and a five-stage multistage series variable capacitor (MSVC) is built and tested to verify the performance of the controller. The recorded response curves and waveforms show that the designed controller can maintain the ZVS angle at the reference angle with satisfactory control performance.

Adaptive Sliding Mode Control Synthesis of Maritime Autonomous Surface Ship

  • Lee, Sang-Do;Xu, Xiao;Kim, Hwan-Seong;You, Sam-Sang
    • 해양환경안전학회지
    • /
    • 제25권3호
    • /
    • pp.306-312
    • /
    • 2019
  • This paper investigates to design a controller for maritime autonomous surface ship (MASS) by means of adaptive super-twisting algorithm (ASTA). A input-out feedback linearization method is considered for multi-input multi-output (MIMO) system. Sliding Mode Controller (SMC) is suitable for MASS subject to ocean environments due to its robustness against parameter uncertainties and disturbances. However, conventional SMC has inherent disadvantages so-called, chattering phenomenon, which resulted from the high frequency of switching terms. Chattering may cause harmful failure of actuators such as propeller and rudder of ships. The main contribution of this work is to address an appropriate controller for MASS, simultaneously controls surge and yaw motion in severe step inputs. Proposed control mechanism well provides convergence bewildered by external disturbances in the middle of steady-state responses as well as chattering attenuation. Also, the adaptive algorithm is contributed to reducing non-overestimated value of control gains. Control inputs of surge and yaw motion are displayed by smoother curves without excessive control activities of actuators. Finally, no overshoot can be seen in transient responses.

Numerical simulation of single-phase two-components flow in naturally fractured oil reservoirs

  • Debossam, Joao Gabriel Souza;dos Santos Heringer, Juan Diego;de Souza, Grazione;Souto, Helio Pedro Amaral
    • Coupled systems mechanics
    • /
    • 제8권2호
    • /
    • pp.129-146
    • /
    • 2019
  • The main goal of this work is to develop a numerical simulator to study an isothermal single-phase two-component flow in a naturally fractured oil reservoir, taking into account advection and diffusion effects. We use the Peng-Robinson equation of state with a volume translation to evaluate the properties of the components, and the discretization of the governing partial differential equations is carried out using the Finite Difference Method, along with implicit and first-order upwind schemes. This process leads to a coupled non-linear algebraic system for the unknowns pressure and molar fractions. After a linearization and the use of an operator splitting, the Conjugate Gradient and Bi-conjugated Gradient Stabilized methods are then used to solve two algebraic subsystems, one for the pressure and another for the molar fraction. We studied the effects of fractures in both the flow field and mass transport, as well as in computing time, and the results show that the fractures affect, as expected, the flow creating a thin preferential path for the mass transport.

외란을 갖는 전기유압 서보시스템의 위치제어 (Position Control of an Electro-hydraulic Servo System with Disturbance)

  • 허준영
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권3호
    • /
    • pp.1-7
    • /
    • 2021
  • In a hydraulic control system, since a hydraulic cylinder drives a relatively large mass of an object, an external load force acts as a disturbance on the control performance of the system. Additionally, as the hydraulic system is used for a long period, there are disturbances that occur gradually, such as a drop in supply pressure because of abrasion of the pump, oil leakage from a valve, and oil leakage from a cylinder. In this study, a state feedback controller based on a linearization technique is applied. To prevent the performance degradation of the controller from the load disturbance, an Extended Luenberger observer (ELO) is used for the Extended system. The case of using the proportional controller, which is a representative linear controller, and the result of using the controller designed in this study are compared and reviewed through simulation. Also, we propose an experimental gain-setting method for a state feedback controller that can be used at industrial sites, and examine how the stability and control performance of the system changes because of the disturbance inputs through the experimental results.

Thermal stress intensity factor solutions for reactor pressure vessel nozzles

  • Jeong, Si-Hwa;Chung, Kyung-Seok;Ma, Wan-Jun;Yang, Jun-Seog;Choi, Jae-Boong;Kim, Moon Ki
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2188-2197
    • /
    • 2022
  • To ensure the safety margin of a reactor pressure vessel (RPV) under normal operating conditions, it is regulated through the pressure-temperature (P-T) limit curve. The stress intensity factor (SIF) obtained by the internal pressure and thermal load should be obtained through crack analysis of the nozzle corner crack in advance to generate the P-T limit curve for the nozzle. In the ASME code Section XI, Appendix G, the SIF via the internal pressure for the nozzle corner crack is expressed as a function of the cooling or heating rate, and the wall thickness, however, the SIF via the thermal load is presented as a polynomial format based on the stress linearization analysis results. Inevitably, the SIF can only be obtained through finite element (FE) analysis. In this paper, simple prediction equations of the SIF via the thermal load under, cool-down and heat-up conditions are presented. For the Korean standard nuclear power plant, three geometric variables were set and 72 cases of RPV models were made, and then the heat transfer analysis and thermal stress analysis were performed sequentially. Based on the FE results, simple engineering solutions predicting the value of thermal SIF under cool-down and heat-up conditions are suggested.