• Title/Summary/Keyword: linear wireless sensor networks

Search Result 49, Processing Time 0.022 seconds

A Study on Cluster Lifetime in Multi-HopWireless Sensor Networks with Cooperative MISO Scheme

  • Huang, Zheng;Okada, Hiraku;Kobayashi, Kentaro;Katayama, Masaaki
    • Journal of Communications and Networks
    • /
    • v.14 no.4
    • /
    • pp.443-450
    • /
    • 2012
  • As for cluster-based wireless sensor networks (WSNs), cluster lifetime is one of the most important subjects in recent researches. Besides reducing the energy consumptions of the clusters, it is necessary to make the clusters achieve equal lifetimes so that the whole network can survive longer. In this paper, we focus on the cluster lifetimes in multi-hop WSNs with cooperative multi-input single-output scheme. With a simplified model of multi-hop WSNs, we change the transmission schemes, the sizes and transmission distances of clusters to investigate their effects on the cluster lifetimes. Furthermore, linear and uniform data aggregations are considered in our model. As a result, we analyze the cluster lifetimes in different situations and discuss the requirements on the sizes and transmission distances of clusters for equal lifetimes.

Closed Walk Ferry Route Design for Wireless Sensor Networks

  • Dou, Qiang;Wang, Yong;Peng, Wei;Gong, Zhenghu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2357-2375
    • /
    • 2013
  • Message ferry is a controllable mobile node with large capacity and rechargeable energy to collect information from the sensors to the sink in wireless sensor networks. In the existing works, route of the message ferry is often designed from the solutions of the Traveling Salesman Problem (TSP) and its variants. In such solutions, the ferry route is often a simple cycle, which starts from the sink, access all the sensors exactly once and moves back to the sink. In this paper, we consider a different case, where the ferry route is a closed walk that contains more than one simple cycle. This problem is defined as the Closed Walk Ferry Route Design (CWFRD) problem in this paper, which is an optimization problem aiming to minimize the average weighted delay. The CWFRD problem is proved to be NP-hard, and the Integer Linear Programming (ILP) formulation is given. Furthermore, a heuristic scheme, namely the Initialization-Split-Optimization (ISO) scheme is proposed to construct closed walk routes for the ferry. The experimental results show that the ISO algorithm proposed in this paper can effectively reduce the average weighted delay compared to the existing simple cycle based scheme.

Localization using Centroid in Wireless Sensor Networks (무선 센서 네트워크에서 위치 측정을 위한 중점 기 법)

  • Kim Sook-Yeon;Kwon Oh-Heum
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.5
    • /
    • pp.574-582
    • /
    • 2005
  • Localization in wireless sensor networks is essential to important network functions such as event detection, geographic routing, and information tracking. Localization is to determine the locations of nodes when node connectivities are given. In this paper, centroid approach known as a distributed algorithm is extended to a centralized algorithm. The centralized algorithm has the advantage of simplicity. but does not have the disadvantage that each unknown node should be in transmission ranges of three fixed nodes at least. The algorithm shows that localization can be formulated to a linear system of equations. We mathematically show that the linear system have a unique solution. The unique solution indicates the locations of unknown nodes are capable of being uniquely determined.

Energy-efficient charging of sensors for UAV-aided wireless sensor network

  • Rahman, Shakila;Akter, Shathee;Yoon, Seokhoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.80-87
    • /
    • 2022
  • Lack of sufficient battery capacity is one of the most important challenges impeding the development of wireless sensor networks (WSNs). Recent innovations in the areas of wireless energy transfer and rechargeable batteries have made it possible to advance WSNs. Therefore, in this article, we propose an energy-efficient charging of sensors in a WSN scenario. First, we have formulated the problem as an integer linear programming (ILP) problem. Then a utility function-based greedy algorithm named UGreedy/UF1 is proposed for solving the problem. Finally, the performance of UGreedy/UF1 is analyzed along with other baseline algorithms: UGreedy/UF2, 2-opt TSP, and Greedy TSP. The simulation results show that UGreedy/UF1 performs better than others both in terms of the deadline missing ratio of sensors and the total energy consumption of UAVs.

Non-Linear Error Identifier Algorithm for Configuring Mobile Sensor Robot

  • Rajaram., P;Prakasam., P
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1201-1211
    • /
    • 2015
  • WSN acts as an effective tool for tracking the large scale environments. In such environment, the battery life of the sensor networks is limited due to collection of the data, usage of sensing, computation and communication. To resolve this, a mobile robot is presented to identify the data present in the partitioned sensor networks and passed onto the sink. In novel data collection algorithm, the performance of the data collecting operation is reduced because mobile robot can be used only within the limited range. To enhance the data collection in a changing environment, Non Linear Error Identifier (NLEI) algorithm has been developed and presented in this paper to configure the robot by means of error models which are non-linear. Experimental evaluation has been conducted to estimate the performance of the proposed NLEI and it has been observed that the proposed NLEI algorithm increases the error correction rate upto 42% and efficiency upto 60%.

Energy Efficiency in Wireless Sensor Networks using Linear-Congruence on LDPC codes (LDPC 코드의 Linear-Congruence를 이용한 WSN 에너지 효율)

  • Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.3
    • /
    • pp.68-73
    • /
    • 2007
  • Recently, WSN(wireless sensor networks) consists of several sensor nodes in sensor field. And each sensors have the enforced energy constraint. Therefore, it is important to manage energy efficiently. In WSN application system, FEC(Forward error correction) increases the energy efficiency and data reliability of the data transmission. LDPC(Low density parity check) code is one of the FEC code. It needs more encoding operation than other FEC code by growing codeword length. But this code can approach the Shannon capacity limit and it is also can be used to increase the data reliability and decrease the transmission energy. In this paper, the author adopt Linear-Congruence method at generating parity check matrix of LDPC(Low density parity check) codes to reduce the complexity of encoding process and to enhance the energy efficiency in the WSN. As a result, the proposed algorithm can increase the encoding energy efficiency and the data reliability.

An Asymmetric Key-Based Security Architecture for Wireless Sensor Networks

  • Haque, Md. Mokammel;Pathan, Al-Sakib Khan;Hong, Choong-Seon;Huh, Eui-Nam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.5
    • /
    • pp.265-277
    • /
    • 2008
  • In spite of previous common assumptions about the incompatibility of public key cryptography (PKC) schemes with wireless sensor networks (WSNs), recent works have shown that they can be utilized for such networks in some manner. The major challenge of employing a PKC-based scheme in a wireless sensor network is posed by the resource limitations of the tiny sensors. Considering this sensor feature, in this paper we propose an efficient PKC-based security architecture with relatively lower resource requirements than those of previously proposed PKC schemes for WSN. In addition, our scheme aims to provide robust security in the network. Our security architecture comprises two basic components; a key handshaking scheme based on simple, linear operations and the derivation of a decryption key by a receiver node. Our architecture enables node-to-base-station and node-to-node secure communications. Analysis and simulation results show that our proposed architecture ensures a good level of security for network communications, and can be effectively implemented with the limited computational, memory, and energy budgets of current-generation sensor nodes.

Implementation of fast stream cipher AA128 suitable for real time processing applications (실시간 처리 응용에 적합한 고속 스트림 암호 AA128 구현)

  • Kim, Gil-Ho;Cho, Gyeong-Yeon;Rhee, Kyung Hyune;Shin, Sang Uk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2207-2216
    • /
    • 2012
  • Recently, wireless Internet environment with mobile phones and wireless sensor networks with severe resource restrictions have been actively studied. Moreover, an overall security issues are essential to build a reliable and secure sensor network. One of secure solution is to develop a fast cryptographic algorithm for data encryption. Therefore, we propose a 128-bit stream cipher, AA128 which has efficient implementation of software and hardware and is suitable for real-time applications such as wireless Internet environment with mobile phones, wireless sensor networks and Digital Right Management (DRM). AA128 is stream cipher which consists of 278-bit ASR and non-linear transformation. Non-linear transformation consists of Confusion Function, Nonlinear transformation(SF0 ~ SF3) and Whitening. We show that the proposed stream cipher AA128 is faster than AES and Salsa20, and it satisfies the appropriate security requirements. Our hardware simulation result indicates that the proposed cipher algorithm can satisfy the speed requirements of real-time processing applications.

A Comprehensive Analysis of the End-to-End Delay for Wireless Multimedia Sensor Networks

  • Abbas, Nasim;Yu, Fengqi
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2456-2467
    • /
    • 2018
  • Wireless multimedia sensor networks (WMSNs) require real-time quality-of-service (QoS) guarantees to be provided by the network. The end-to-end delay is very critical metric for QoS guarantees in WMSNs. In WMSNs, due to the transmission errors incurred over wireless channels, it is difficult to obtain reliable delivery of data in conjunction with low end-to-end delay. In order to improve the end-to-end delay performance, the system has to drop few packets during network congestion. In this article, our proposal is based on optimization of end-to end delay for WMSNs. We optimize end-to-end delay constraint by assuming that each packet is allowed fixed number of retransmissions. To optimize the end-to-end delay, first, we compute the performance measures of the system, such as end-to-end delay and reliability for different network topologies (e.g., linear topology, tree topology) and against different choices of system parameters (e.g., data rate, number of nodes, number of retransmissions). Second, we study the impact of the end-to-end delay and packet delivery ratio on indoor and outdoor environments in WMSNs. All scenarios are simulated with multiple run-times by using network simulator-2 (NS-2) and results are evaluated and discussed.

Location Estimation based on Edge Weights in Wireless Sensor Networks (무선 센서 네트워크에서 에지 가중치를 이용하여 위치를 측정하는 기법)

  • Kim Sook-Yeon;Kwon Oh-Heum
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10A
    • /
    • pp.938-948
    • /
    • 2005
  • Localization in wireless sensor networks is to determine the positions of all nodes based on the Down positions of several nodes. Much previous work for localization use multilateration or triangulation based on measurement of angles or distances to the fixed nodes. In this paper, we propose a new centralized algorithm for localization using weights of adjacent nodes. The algorithm, having the advantage of simplicity, shows that the localization problem can be formulated to a linear matrix equalities. We mathematically show that the equalities have a unique solution. The unique solution indicates the locations of unknown nodes are capable of being uniquely determined. Three kinds of weights proposed for practical use are compared in simulation analysis.