• Title/Summary/Keyword: linear stochastic structure

Search Result 61, Processing Time 0.028 seconds

Stochastic response spectra for an actively-controlled structure

  • Mochio, Takashi
    • Structural Engineering and Mechanics
    • /
    • v.32 no.1
    • /
    • pp.179-191
    • /
    • 2009
  • A stochastic response spectrum method is proposed for simple evaluation of the structural response of an actively controlled aseismic structure. The response spectrum is constructed assuming a linear structure with an active mass damper (AMD) system, and an earthquake wave model given by the product of a non-stationary envelope function and a stationary Gaussian random process with Kanai-Tajimi power spectral density. The control design is executed using a linear quadratic Gaussian control strategy for an enlarged state space system, and the response amplification factor is given by the combination of the obtained statistical response values and extreme value theory. The response spectrum thus produced can be used for simple dynamical analyses. The response factors obtained by this method for a multi-degree-of-freedom structure are shown to be comparable with those determined by numerical simulations, demonstrating the validity and utility of the proposed technique as a simple design tool. This method is expected to be useful for engineers in the initial design stage for structures with active aseismic control.

Stochastic structures of world's death counts after World War II

  • Lee, Jae J.
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.3
    • /
    • pp.353-371
    • /
    • 2022
  • This paper analyzes death counts after World War II of several countries to identify and to compare their stochastic structures. The stochastic structures that this paper entertains are three structural time series models, a local level with a random walk model, a fixed local linear trend model and a local linear trend model. The structural time series models assume that a time series can be formulated directly with the unobserved components such as trend, slope, seasonal, cycle and daily effect. Random effect of each unobserved component is characterized by its own stochastic structure and a distribution of its irregular component. The structural time series models use the Kalman filter to estimate unknown parameters of a stochastic model, to predict future data, and to do filtering data. This paper identifies the best-fitted stochastic model for three types of death counts (Female, Male and Total) of each country. Two diagnostic procedures are used to check the validity of fitted models. Three criteria, AIC, BIC and SSPE are used to select the best-fitted valid stochastic model for each type of death counts of each country.

Design of the optimal stochastic inputs for linear system parameter estimation (선형계통의 파라미터 추정을 위한 최적 확률 입력신호의 설계)

  • ;;Lee, S. W.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.168-173
    • /
    • 1987
  • The optimal Input design problem for linear system Which have the common parameters in the system and noise transfer functions. Exploiting the assumed Model structure and deriving the information matrix structure in detail, D-optimal open-loop stochastic input can be realized as an ARMA process under the Input or output variance constraints. In spite of the reduced order, It Is necessary to develop an efficient algorithms for the optimation with respect to the .rho..

  • PDF

Stochastic analysis of seismic structural response with soil-structure interaction

  • Sarkani, S.;Lutes, L.D.;Jin, S.;Chan, C.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.1
    • /
    • pp.53-72
    • /
    • 1999
  • The most important features of linear soil-foundation-structure interaction are reviewed, using stochastic modeling and considering kinematic interaction, inertial interaction, and structural distortion as three separate stages of the dynamic response to the free-field motion. The way in which each of the three dynamic stages modifies the spectral density of the motion is studied, with the emphasis being on interpretation of these results, rather than on the development of new analysis techniques. Structural distortion and inertial interaction analysis are shown to be precisely modeled as linear filtering operations. Kinematic interaction, though, is more complicated, even though it has a filter-like effect on the frequency content of the motion.

Aircraft wings dynamics suppression by optimal NESs designed through an Efficient stochastic linearisation approach

  • Navarra, Giacomo;Iacono, Francesco Lo;Oliva, Maria;Esposito, Antonio
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.5
    • /
    • pp.405-423
    • /
    • 2020
  • Non-linear energy sink (NES) is an emerging passive absorber able to mitigate the dynamic response of structures without any external energy supply, resonating with all the modes of the primary structure to control. However, its inherent non-linearities hinder its large-scale use and leads to complicated design procedures. For this purpose, an approximate design approach is herein proposed in a stochastic framework. Since loads are random in nature, the stochastic analysis of non-linear systems may be performed by means of computational intensive techniques such as Monte Carlo simulations (MCS). Alternatively, the Stochastic Linearisation (SL) technique has proven to be an effective tool to investigate the performance of different passive control systems under random loads. Since controlled systems are generally non-classically damped and most of SL algorithms operate recursively, the computational burden required is still large for those problems that make intensive use of SL technique, as optimal design procedures. Herein, a procedure to speed up the Stochastic Linearisation technique is proposed by avoiding or strongly reducing numerical evaluations of response statistics. The ability of the proposed procedure to effectively reduce the computational effort and to reliably design the NES is showed through an application on a well-known case study related to the vibrations mitigation of an aircraft wing.

Distributed Fusion Moving Average Prediction for Linear Stochastic Systems

  • Song, Il Young;Song, Jin Mo;Jeong, Woong Ji;Gong, Myoung Sool
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.88-93
    • /
    • 2019
  • This paper is concerned with distributed fusion moving average prediction for continuous-time linear stochastic systems with multiple sensors. A distributed fusion with the weighted sum structure is applied to the optimal local moving average predictors. The distributed fusion prediction algorithm represents the optimal linear fusion by weighting matrices under the minimum mean square criterion. The derivation of equations for error cross-covariances between the local predictors is the key of this paper. Example demonstrates effectiveness of the distributed fusion moving average predictor.

Stochastic optimum design criterion of added viscous dampers for buildings seismic protection

  • Marano, Giuseppe Carlo;Trentadue, Francesco;Greco, Rita
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.21-37
    • /
    • 2007
  • In this study a stochastic approach for linear viscous dampers design adopted for seismic protection of buildings is developed. Devices optimal placement into the main structure and their mechanical parameters are attained by means of a reliability-based optimum design criterion, in which an objective function (O.F.) is minimized, subject to a stochastic constraint. The seismic input is modelled by a non stationary modulated Kanai Tajimi filtered stochastic process. Building is represented by means of a plane shear type frame model. The selected criterion for the optimization searches the minimum of the O.F., here assumed to be the cost of the seismic protection, i.e., assumed proportional to the sum of added dampings of each device. The stochastic constraint limits a suitable approximated measure of the structure failure probability, here associated to the maximum interstorey drift crossing over a given threshold limit, related, according with modern Technical Codes, to the required damage control.

Design and Implementation of a Stochastic Evolution Algorithm for Placement (Placement 확률 진화 알고리즘의 설계와 구현)

  • 송호정;송기용
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.87-92
    • /
    • 2002
  • Placement is an important step in the physical design of VLSI circuits. It is the problem of placing a set of circuit modules on a chip to optimize the circuit performance. The most popular algorithms for placement include the cluster growth, simulated annealing and integer linear programming. In this paper we propose a stochastic evolution algorithm searching solution space for the placement problem, and then compare it with simulated annealing by analyzing the results of each implementation.

  • PDF

NEURAL CHANDRASEKHAR FILTERING METHOD FOR STETIONARY SIGNAL PROCESSES

  • Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.742-745
    • /
    • 1994
  • In this paper we show the performance of neural Chandrasekhar filtering which is a special case for the new method of neural filtering using the artificial neural network systems developed recently for the filtering problems of linear and nonlinear, stationary and nonstationary stochastic signals. The neurofilter developed has either the finite impulse response(FIR) structure or the infinite impulse response(IIR) structure. The neurofilter differs from the conventional linear digital FIR and IIR filters because the artificial neural network system used in the neurofilter has nonlinear structure due to the sigmoid function. Numerical studies for the estimation of a second order Butterworth process are performed by changing the structures of the neurofilter in order to evaluate the performance indices under the changes of the output noises or disturbances. In the numerical studies both Chandrasekhar filtering estimates and true signals are used as the training signals for the neurofilter. The results obtained from the studies verified the capabilities which are essentially necessary for on-line filtering of various stochastic signals.

  • PDF

A Simultaneous Perturbation Stochastic Approximation (SPSA)-Based Model Approximation and its Application for Power System Stabilizers

  • Ko, Hee-Sang;Lee, Kwang-Y.;Kim, Ho-Chan
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.506-514
    • /
    • 2008
  • This paper presents an intelligent model; named as free model, approach for a closed-loop system identification using input and output data and its application to design a power system stabilizer (PSS). The free model concept is introduced as an alternative intelligent system technique to design a controller for such dynamic system, which is complex, difficult to know, or unknown, with input and output data only, and it does not require the detail knowledge of mathematical model for the system. In the free model, the data used has incremental forms using backward difference operators. The parameters of the free model can be obtained by simultaneous perturbation stochastic approximation (SPSA) method. A linear transformation is introduced to convert the free model into a linear model so that a conventional linear controller design method can be applied. In this paper, the feasibility of the proposed method is demonstrated in a one-machine infinite bus power system. The linear quadratic regulator (LQR) method is applied to the free model to design a PSS for the system, and compared with the conventional PSS. The proposed SPSA-based LQR controller is robust in different loading conditions and system failures such as the outage of a major transmission line or a three phase to ground fault which causes the change of the system structure.