• Title/Summary/Keyword: linear network

Search Result 1,835, Processing Time 0.027 seconds

Optimum design of Linear Induction Motor Using Genetic Algorithm and Neural Network (유전 알고리즘과 신경 회로망을 이용한 선형 유도전동기 최적 설계)

  • Lee, Ju-Hyun;Kim, Hong-Sik;Kim, Chang-Eob
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.56-60
    • /
    • 2002
  • The paper presents the optimum design of a linear induction motor(LIM) using Genetic algorithm, Neural Network and SUMT. The design variables are optimized by three different optimization methods and the results are discussed.

  • PDF

Position Control of Linear Motor-based Container Transfer System using DR-FNNs (DR-FNNs를 이용한 리니어 모터 기반 컨테이너 이송시스템의 위치제어)

  • Lee, Jin-Woo;Suh, Jin-Ho;Lee, Young-Jin;Lee, Kwan-Soon
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.541-548
    • /
    • 2004
  • In the maritime container terminal. LMCTS (Linear Motor-based Container Transfer System) is horizontal transfer system for the yard automation, which In., been proposed to take the place of AGV (Automated Guided Vehicle). The system is based on PMLSM (Permanent Magnetic Linear Synchronous Motor) that is consists of stator modules on the rail and shuttle car (mover). Because of large variant of mover's weight by loading and unloading containers, the difference of each characteristic of stator modules, and a stator module's trouble etc. LMCTS is considered as that the system is changed its model suddenly and variously. In this paper, we will introduce the softcomputing method of a multi-step prediction control for LMCTS using DR- FNN (Dynamically-constructed Recurrent Fuzzy Neural Network). The proposed control system is used two networks for multi step prediction Consequently, the system has an ability to adapt for external disturbance, detent force, force ripple, and sudden changes by loading and unloading the container.

Application of deep learning with bivariate models for genomic prediction of sow lifetime productivity-related traits

  • Joon-Ki Hong;Yong-Min Kim;Eun-Seok Cho;Jae-Bong Lee;Young-Sin Kim;Hee-Bok Park
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.622-630
    • /
    • 2024
  • Objective: Pig breeders cannot obtain phenotypic information at the time of selection for sow lifetime productivity (SLP). They would benefit from obtaining genetic information of candidate sows. Genomic data interpreted using deep learning (DL) techniques could contribute to the genetic improvement of SLP to maximize farm profitability because DL models capture nonlinear genetic effects such as dominance and epistasis more efficiently than conventional genomic prediction methods based on linear models. This study aimed to investigate the usefulness of DL for the genomic prediction of two SLP-related traits; lifetime number of litters (LNL) and lifetime pig production (LPP). Methods: Two bivariate DL models, convolutional neural network (CNN) and local convolutional neural network (LCNN), were compared with conventional bivariate linear models (i.e., genomic best linear unbiased prediction, Bayesian ridge regression, Bayes A, and Bayes B). Phenotype and pedigree data were collected from 40,011 sows that had husbandry records. Among these, 3,652 pigs were genotyped using the PorcineSNP60K BeadChip. Results: The best predictive correlation for LNL was obtained with CNN (0.28), followed by LCNN (0.26) and conventional linear models (approximately 0.21). For LPP, the best predictive correlation was also obtained with CNN (0.29), followed by LCNN (0.27) and conventional linear models (approximately 0.25). A similar trend was observed with the mean squared error of prediction for the SLP traits. Conclusion: This study provides an example of a CNN that can outperform against the linear model-based genomic prediction approaches when the nonlinear interaction components are important because LNL and LPP exhibited strong epistatic interaction components. Additionally, our results suggest that applying bivariate DL models could also contribute to the prediction accuracy by utilizing the genetic correlation between LNL and LPP.

Optimized Polynomial Neural Network Classifier Designed with the Aid of Space Search Simultaneous Tuning Strategy and Data Preprocessing Techniques

  • Huang, Wei;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.911-917
    • /
    • 2017
  • There are generally three folds when developing neural network classifiers. They are as follows: 1) discriminant function; 2) lots of parameters in the design of classifier; and 3) high dimensional training data. Along with this viewpoint, we propose space search optimized polynomial neural network classifier (PNNC) with the aid of data preprocessing technique and simultaneous tuning strategy, which is a balance optimization strategy used in the design of PNNC when running space search optimization. Unlike the conventional probabilistic neural network classifier, the proposed neural network classifier adopts two type of polynomials for developing discriminant functions. The overall optimization of PNNC is realized with the aid of so-called structure optimization and parameter optimization with the use of simultaneous tuning strategy. Space search optimization algorithm is considered as a optimize vehicle to help the implement both structure and parameter optimization in the construction of PNNC. Furthermore, principal component analysis and linear discriminate analysis are selected as the data preprocessing techniques for PNNC. Experimental results show that the proposed neural network classifier obtains better performance in comparison with some other well-known classifiers in terms of accuracy classification rate.

A Comparison Study on the Weighted Network Centrality Measures of tnet and WNET (tnet과 WNET의 가중 네트워크 중심성 지수 비교 연구)

  • Lee, Jae Yun
    • Journal of the Korean Society for information Management
    • /
    • v.30 no.4
    • /
    • pp.241-264
    • /
    • 2013
  • This study compared and analyzed weighted network centrality measures supported by Opsahl's tnet and Lee's WNET, which are free softwares for weighted network analysis. Three node centrality measures including weighted degree, weighted closeness, and weighted betweenness are supported by tnet, and four node centrality measures including nearest neighbor centrality, mean association, mean profile association, triangle betweenness centrality are supported by WNET. An experimental analysis carried out on artificial network data showed tnet's high sensitiveness on linear transformations of link weights, however, WNET's centrality measures were insensitive to linear transformations. Seven centrality measures from both tools, tnet and WNET, were calculated on six real network datasets. The results showed the characteristics of weighted network centrality measures of tnet and WNET, and the relationships between them were also discussed.

A Robust Wearable u-Healthcare Platform in Wireless Sensor Network

  • Lee, Seung-Chul;Chung, Wan-Young
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.465-474
    • /
    • 2014
  • Wireless sensor network (WSN) is considered to be one of the most important research fields for ubiquitous healthcare (u-healthcare) applications. Healthcare systems combined with WSNs have only been introduced by several pioneering researchers. However, most researchers collect physiological data from medical nodes located at static locations and transmit them within a limited communication range between a base station and the medical nodes. In these healthcare systems, the network link can be easily broken owing to the movement of the object nodes. To overcome this issue, in this study, the fast link exchange minimum cost forwarding (FLE-MCF) routing protocol is proposed. This protocol allows real-time multi-hop communication in a healthcare system based on WSN. The protocol is designed for a multi-hop sensor network to rapidly restore the network link when it is broken. The performance of the proposed FLE-MCF protocol is compared with that of a modified minimum cost forwarding (MMCF) protocol. The FLE-MCF protocol shows a good packet delivery rate from/to a fast moving object in a WSN. The designed wearable platform utilizes an adaptive linear prediction filter to reduce the motion artifacts in the original electrocardiogram (ECG) signal. Two filter algorithms used for baseline drift removal are evaluated to check whether real-time execution is possible on our wearable platform. The experiment results shows that the ECG signal filtered by adaptive linear prediction filter recovers from the distorted ECG signal efficiently.

Monitoring of gamma-ray bright AGN BLLAC and OJ287 with KVN 21m radio telescopes

  • Han, Myoung-Hee;Lee, Sang-Sung;Byun, Do-Young;Yang, Jee-Hye;Baek, Jun-Hyun;Sohn, Bong-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.241-241
    • /
    • 2012
  • MOGABA is a project monitoring of gamma-ray bright AGN(Active Galactic Nuclei). Since May 2011, we have observed total flux, degree of linear polarization, and polarization angle of about twenty AGN once a week at 22, 43 and 86GHz using KVN(Korean VLBI Network) 21m radio telescopes. We have observed variation of total flux of BLLAC and OJ287 from May 2011 to March 2012. We have observed flares of total flux at 22GHz for those sources from October 2011 to November 2011. In this paper we report the variation of total flux, degree of linear polarization and polarization angle at 22, 43, 86GHz for BLLAC and OJ287.

  • PDF

A Study on the Fault Early Detection System for the Preventive Maintenance in Power Receiving and Substation (인공신경망을 이용한 수변전설비의 예방보전을 위한 고장 조기 감지시스템에 관한 연구)

  • Lee, Jung-Ki
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.14 no.3
    • /
    • pp.95-100
    • /
    • 2011
  • The modern society longing for the convenience of up-to-date technology, there are attempts of miniaturization and high reliance of power equipments in the effectiveness aspect of urban area's usage of space while requiring more electrical energy than now. Consequently, paper used to the Neral Network for a forcasting conservation system. A neral network is powerful asta modeling tool that is able to capture and represent complex input/output relationships. The true power and advantage of neral networks lies in their ability to learn these relationships directly from the data being modeled. Traditional linear models are simply inadequate when it comes to modeling data that contains non-linear characteristics. Form results of this study, the Neral Network is will play an important role for insulation diagnosis system of real site GIS and power eqipment using $SF_6$ gas.

Motion Control of Pneumatic Servo Cylinder Using Neural Network (신경회로망을 이용한 공압 서보실린더의 운동제어)

  • Cho, Seung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.140-147
    • /
    • 2008
  • This paper describes a Neural Network based PD control scheme for motion control of pneumatic servo cylinder. Pneumatic systems have inherent nonlinearities such as compressibility of air and nonlinear frictions present in cylinder. The conventional linear controller is limited in some applications where the affection of nonlinear factor is dominant. A self-excited oscillation method is applied to derive the dynamic design parameters of linear model. Based on the parameters thus identified, a PD feedback compensator is designed first and then a neural network is incorporated. The experiments of a trajectory tracking control using the proposed control scheme are performed and a significant reduction in tracking error is achieved by comparing with those of a PD control.

A Study on Application of the Multi-layor Perceptron to the Human Sensibility Classifier with Eletroencephalogram (뇌파의 감성 분류기로서 다층 퍼셉트론의 활용에 관한 연구)

  • Kim, Dong Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1506-1511
    • /
    • 2018
  • This study presents a human sensibility evaluation method using neural network and multiple-template method on electroencephalogram(EEG). We used a multi-layer perceptron type neural network as the sensibility classifier using EEG signal. For our research objective, 10-channel EEG signals are collected from the healthy subjects. After the necessary preprocessing is performed on the acquired signals, the various EEG parameters are estimated and their discriminating performance is evaluated in terms of pattern classification capability. In our study, Linear Prediction(LP) coefficients are utilized as the feature parameters extracting the characteristics of EEG signal, and a multi-layer neural network is used for indicating the degree of human sensibility. Also, the estimation for human comfortableness is performed by varying temperature and humidity environment factors and our results showed that the proposed scheme achieved good performances for evaluation of human sensibility.